研究生: |
楊智翔 Zhi-Xiang Yang |
---|---|
論文名稱: |
應用可變步長適應滑模結合指數律演算法於機械手臂追跡之控制器設計 Design a Variable Step-Size Adaptive Sliding Mode Controller with Exponential Law for Robot Arm Tracking |
指導教授: |
陳美勇
Chen, Mei-Yung |
學位類別: |
碩士 Master |
系所名稱: |
機電工程學系 Department of Mechatronic Engineering |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 56 |
中文關鍵詞: | 可變步長適應控制 、滑動模式控制 、機械手臂 、上界 、指數律 |
英文關鍵詞: | variable step-size adaptive control, sliding mode control, robot arm, upper bound, exponential law |
DOI URL: | https://doi.org/10.6345/NTNU202205452 |
論文種類: | 學術論文 |
相關次數: | 點閱:233 下載:35 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要在於結合指數律(exponential law, EL)於可變步長適應滑模控制器(variable step size adaptive sliding mode controller, VSSASMC)並應用於機械手臂的追跡。在設計控制器時考慮到機械手臂的不確定量與外界干擾,於是本研究選擇具有良好強健性的滑動模式控制器為主控制器。而滑動模式控制中有一設計參數為切換增益(switching gain),此參數必須大於系統的干擾和不確定量的上界(upper bound),但是通常我們並無法直接知道上界值只能通過重覆測試調整。為了使系統能夠應付未知邊界的不確定量與干擾,本研究加入適應控制調整滑動模式中的上界參數,使控制器能應付多變的情況。
而適應控制本身則會使系統響應變慢,因此引入了指數律使系統更快收斂。而指數律不只可以與滑動模式控制結合達到減小跳切現象的效果;同時也能和適應控制結合成可變步長適應控制,使適應律的步長依誤差而調整。並且通過Lyapunov函數及Barbalat引理證明系統穩定性。最後經由實驗驗證此控制器的性能。
In this study, we design an adaptive sliding mode controller which is applied on trajectory tracking of robot arms. Consider the uncertainties and external disturbances of a robot arm, we choose the sliding mode control (SMC) to be major one. We need to decide a switching gain bigger than the upper bound of system uncertainty. Usually we can’t figure out the upper bound of system uncertainty, we only decide a switching gain by trials and errors. Therefore, we propose an adaptive control to tune the switching gain of SMC that would be able to handle the unknown disturbances and uncertainties.
Subsequently, the adaptive control makes system transient response slowly, so we introduce an exponential law (EL) to make system transient response faster. We not only combine EL with SMC to reduce chattering, but also combine EL with adaptive control to be the variable step size adaptive control which step size is adjust by error. Then we proof the stability of system by Lyapunov function and Barbalat’s Lemma. Consequently, the experiment results show excellent performance of this controller.
[1] Stephen R. Platt, Jeff A. Hawks, and Mark E. Rentschler, “Vision and Task Assistance Using Modular Wireless In Vivo Surgical Robots,” IEEE Transactions on Biomedical Engineering, vol. 56, no. 6, pp.1700-1710, June 2009.
[2] Pedro Neto, J. Norberto Pires, and A. Paulo Moreira, “Accelerometer-Based Control of an Industrial Robotic Arm,” The 18th IEEE International Symposium on Robot and Human Interactive Communication, pp. 1192-1197, September 2009.
[3] Jonathan Kofman, Xianghai Wu, Timothy J. Luu, and Siddharth Verma, “Teleoperation of a Robot Manipulator Using a Vision-Based Human–Robot Interface,” IEEE Transactions on Industrial Electronics, vol. 52, no. 5, pp.1206-1219, October 2005.
[4] Zhijun Li, Shuzhi Sam Ge, Martin Adams, and Wijerupage Sardha Wijesoma, “Adaptive Robust Output-Feedback Motion/Force Control of Electrically Driven Nonholonomic Mobile Manipulators,” IEEE Transactions on Control Systems Technology, vol. 16, no. 6, November 2008.
[5] Luca Massimiliano Capisani, and Antonella Ferrara, “Trajectory Planning and Second-Order Sliding Mode Motion/Interaction Control for Robot Manipulators in Unknown Environments,” IEEE Transactions on Industrial Electronics, vol. 59, no. 8, pp. 3189-3198, August 2012.
[6] S.H. Park and S.I. Han, “Robust-tracking Control for Robot Manipulator with Deadzone and Friction Using Backstepping and RFNN Controller,” IET Control Theory and Applications, vol. 5, iss. 12, pp. 1397-1417, 2011.
[7] Divyesh Ginoya, P. D. Shendge, and S. B. Phadke, “Sliding Mode Control for Mismatched Uncertain Systems Using an Extended Disturbance Observer,” IEEE Transactions on Industrial Electronics, vol. 61, no. 4, pp.1983-1992, April 2014.
[8] Mehmet Önder Efe, “Fractional Fuzzy Adaptive Sliding-Mode Control of a 2-DOF Direct-Drive Robot Arm,” IEEE Transactions on Systems, vol. 38, no. 6, December 2008.
[9] Charles J. Fallaha, Maarouf Saad, Hadi Youssef Kanaan, and Kamal Al-Haddad, “Sliding-Mode Robot Control with Exponential Reaching Law,” IEEE Transactions on Industrial Electronics, vol. 58, no. 2, pp.600-610, February 2011.
[10] C.-C. Cheng, S.-H. Chien, and F.-C. Shih, “Design of Robust Adaptive Variable Structure Tracking Controllers with Application to Rigid Robot Manipulators,” IET Control Theory and Applications, vol. 4, iss. 9, pp. 1655–1664, 2010.
[11] Zi-Jiang Yang, Youichirou Fukushima, and Pan Qin, “Decentralized Adaptive Robust Control of Robot Manipulators Using Disturbance Observers,” IEEE Transactions on Control Systems Technology, vol. 20, no. 5, pp.1357-1365, September 2012.
[12] Raymond H. Kwong, and Edward W. Johnston, “A Variable Step Size LMS Algorithm,” IEEE Transactions on Signal Processing, vol. 40, no. 7, pp.1633-1642, July 1992.
[13] Sheng Zhang and Jiashu Zhang, “New Steady-State Analysis Results of Variable Step-Size LMS Algorithm with Different Noise Distributions,” IEEE Signal Processing Letters, vol. 21, no. 6, pp.653-657, June 2014.
[14] Hsu-Chang Huang and Junghsi Lee, “A New Variable Step-Size NLMS Algorithm and Its Performance Analysis,” IEEE Transactions on Signal Processing, vol. 60, no. 4, pp.2055-2060, April 2012.
[15] Aimeng Wang, Xingwang Jia, and Shuhui Dong, “A New Exponential Reaching Law of Sliding Mode Control to Improve Performance of Permanent Magnet Synchronous Motor,” IEEE Transactions on Magnetics, vol. 49, no. 5, pp.2409-2412, May 2013.