研究生: |
古鎮南 Jhen-Nan Gu |
---|---|
論文名稱: |
微/奈米抗反射結構應用於矽晶太陽能電池之研製 Fabrication of silicon solar cell based on micro/nano antireflection structures |
指導教授: |
楊啓榮
Yang, Chii-Rong |
學位類別: |
碩士 Master |
系所名稱: |
機電工程學系 Department of Mechatronic Engineering |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 中文 |
論文頁數: | 124 |
中文關鍵詞: | 太陽能電池 、抗反射結構 、光輔助電化學蝕刻 、微/奈米複合結構 |
英文關鍵詞: | Solar cell, Antireflective structure, Photo-assisted electrochemical etching, Micro-nano composite structure |
論文種類: | 學術論文 |
相關次數: | 點閱:116 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
目前商用太陽能電池,其抗反射結構大多以隨機金字塔結構,但此結構並無法達到最佳的電池效能。有鑑於傳統太陽能電池的製作方法,對於抗反射效能的提升極為有限,故本研究利用微影技術定義圖案,並搭配光輔助電化學蝕刻(PAECE)之整合技術,在矽晶片表面製作高深寬比的微/奈米抗反射結構。
微/奈米抗反射結構製作於N型矽基板上,當PAECE蝕刻時間為2 hr條件下,可得到具有倒金字塔的形貌外,尚還具有深凹的巨孔洞、微溝渠、黑色薄膜層等四種特殊結構。在390 nm900 nm波長範圍內,空白矽晶片的平均反射率為30.59 %。未經過PAECE蝕刻的倒金字塔陣列,平均反射效率為14.15 %;具倒金字塔陣列再經PAECE蝕刻後,平均反射率可降低為2.21 %。最後利用網印技術去印製上、下電極,完整製作出具有微/奈米複合結構之太陽能電池後,執行電池效能的評估與測試。
本研究所製作完成之電池,在AM 1.5G之太陽光模擬環境下,進行電池I-V特性量測,以比較不同參數下電池之短路電流密度(Jsc)、開路電壓(Voc)、串聯電阻(Rs)、並聯電阻(Rsh)、填充因子(FF)及轉換效率等特性影響。
Nowadays, commercial silicon solar cell usually use the random pyramid as an antireflective structure, but its antireflective performance is not very well. The improvement of antireflective performance for conventional solar cell is not easy to achieve. Therefore, this study presents the integration of photolithography and photo-assisted electrochemical etching (PAECE) to fabricate micro/nano antireflection structures with a high aspect ratio on the surface of silicon wafer.
Micro/nano antireflection structures were fabricated on the N-type silicon wafers. The micro/nano antireflection structures are produced after PAECE under the etching time of 2 hr. The micro/nano antireflection structures of combining inverted pyramid, deep macroporous, micro-trench, and black membrane can be observed simultaneously. The weighted mean reflectance of a blank silicon wafer is 30.59 % in the 390900 nm wavelength regimes. Inverted pyramid arrays without PAECE can reduce the weighted mean reflectance to 14.15 %. Inverted pyramid arrays with 30 min PAECE reduce the weighted mean reflectance even to 2.21 %. Finally, screen printing technology print the upper and lower electrodes, the integrity fabrication has the micro/nano structure construction of solar cell, the implementation of the cell performance evaluation and testing.
The cell produced in this study, the prepared solar cell is performed with I-V measurement under a simulated AM 1.5G condition. We compare the effect on short circuit current density (Jsc), open circuit voltage (Voc), series resistance (Rs), shunt resistance (Rsh), fill factor (FF), and conversion efficiency, etc. of different parameters.
1. 楊啟榮 等人, "微機電系統技術與應用", 精密儀器發展中心, 第四章, 2003, pp. 142.
2. T. Markvart, Solar Electricity. Wiley, 2003.
3. 林明獻,太陽電池技術入門,全華圖書股份有限公司,2007年10月.
4. M.A. Green, J. Zhao, A. Wang, and S. R. Wenham, "Very High Efficiency Silicon Solar Cells—Science and Technology", IEEE Transactions on electron device, Vol. 3, 1999.
5. M. A. Green, K. Emery, Y. Hishikawa and W. Warta, "Solar cell efficiency tables (version 33)", Progress in Photovoltaics: Research and Applications, Vol. 17, pp. 85-94, 2009.
6. V. Lehmann, "The physics of macropore formation in low-doped n-type silicon", Journal of the Electrochemical Society, Vol. 140, pp. 28362843, 1993. (32)
7. A. Satoh, "Formation of through-holes on silicon wafer by optical excitation electropolishing method", Japanese Journal of Applied Physics, Vol. 39, pp. 378386, 2000. (29)
8. V. Lehmann and H. Föll, "Formation mechanism and properties of electrochemically etched trenches in n-type silicon", Journal of the Electrochemical Society, Vol. 137, pp. 653658, 1990. (30)
9. V. Lehmann and U. Grüning, "The limits of macropore array fabrication", Thin Solid Films, Vol. 297, pp. 1317, 1997. (31)
10. V. Lehmann, "Porous silicon formation and other photo-electrochemical effects at silicon electrodes anodized in hydrofluoric acid", Applied Surface Science, Vol. 106, pp. 402405, 1996. (33)
11. V. Lehmann, "Porous silicon-a new material for MEMS", Proc. of Micro Electro Mechanical System Workshop, California, USA, pp. 16, 1996. (34)
12. 蔡永明, 網版製版印刷實務, 星貝貿易股份有限公司, (1997), P.1
13. S. O. Kasap, Optoelectronics and photonics, Canada: Prentice Hall, 2001.
14. J. Zhao, A. Wang and M. A. Green, "24.5% Efficiency silicon PERT Cells on MCZ substrates and 24.7% efficiency PERL cells on FZ substrates ", Progress in Photovoltaics: Research and Applications, Vol. 7, pp. 471474, 1999.
15. J. Zhao, A. Wang, P. P. Altermatt, and M. A. Green, "High efficiency PERT cell on N-type silicon substrates", IEEE, pp. 218221, 2002.
16. A. Uhir, "Electrolytic shaping of germanium and silicon", Bell System Technical Journal, Vol. 35, pp. 333347, 1956.
17. S. Bastide, A. Albu-Yaron, S. Strehlke, and C. Lévy-Clément, "Formation and characterization of porous silicon layers for application in multicrystalline silicon solar cells", Solar Energy Materials & Solar Cells, Vol. 57, pp.393417, 1999.
18. P. Roussel, V. Lysenko, B. Remaki, G. Delhomme, A. Dittmar, and D. Barbier, "Thick oxidised porous silicon layers for the design of a biomedical thermal conductivity microsensor", Sensor and Actuators A, Vol. 74, pp. 100103, 1999.
19. M. B. Ali, R. Mlika, H. B. Ouada, R. M’ghaïeth, and H. Maâref, "Porous silicon as substrate for ion sensors", Sensor and Actuators A, Vol. 74, pp. 123125, 1999.
20. S. Rowson, A. Chelnokov, and J. M. Lourtioz, "Two-dimensional photonic crystals in macroporous silicon: From mid-infrared (10 m) to telecommunication wavelengths (1.31.5 m)", Journal of Lightwave Technology, Vol. 17, pp. 19891995, 1999.
21. U. Grüninga, V. Lehmann, S. Ottow, and K. Busch, "Macroporous silicon with a complete two-dimensional photonic band gap centered at 5 µm", Applied Physics Letters, Vol. 68, 747, 1996.
22. F. Müller, A. Birner, U. Gösele, V. Lehmann, S. Ottow, and H. Föll, "Structuring of macroporous silicon for applications as photonic crystals", Journal of Porous Material, 201, 2000.
23. H. Ohji, S. Izuo, P. J. French, and K. Tsutsumi, "Pillar structures with a sub-micron space fabricated by macroporous-based micromachining", Sensor and Actuators A, Vol. 97-98, pp. 744748, 2002.
24. S. Izuo, H. Ohji, and P. J. French, "A novel electrochemical etching technique for n-type silicon", Sensors and Actuators A, Vol. 97, pp. 720724, 2002.
25. H. Ohji, P.J. French, and K. Tsutsumi, "Fabrication of mechanical in p-type silicon using electrochemical etching", Sensors and Actuators, Vol. 82, pp. 254258, 2000.
26. R. L. Smith and S. D. Collins, "Porous silicon formation mechanisms", Journal of Applied Physics, Vol. 71, pp. 122, 1992.
27. V. Lehmann and H. Föll, "Formation mechanism and properties of electrochemically etched trenches in n-type silicon", Journal of the Electrochemical Society, Vol. 137, pp. 653658, 1990.
28. X. G. Zhang, S. D. Collins, and R. L. Smith, "Porous silicon formation and electropolishing of silicon by anodic polarization in HF solution", Journal of the Electrochemical Society, Vol. 136, pp. 15611565, 1989.
29. X. G. Zhang, "Mechanism of pore formation on n-type silicon", Journal of the Electrochemical Society, Vol. 138, pp. 37503756, 1991.
30. R. L. Smith, S. F. Chuang, and S. D. Collins, "A theoretical model of the formation morphologies of porous silicon", Journal of Electronic Materials, Vol. 17, pp. 533541, 1988.
31. M. I. J. Beale, J. D. Benjamin, M. J. Uren, N. G. Chew, and A. G. Cullis, "An experimental and theoretical study of the formation and microstructure of porous silicon", Journal of Crystal Growth, Vol. 73, pp. 622636, 1985.
32. M. I. J. Beale, N. G. Chew, M. J. Uren, A. G. Cullis, and J. D. Benjamin, "Microstructure and formation mechanism of porous silicon", Applied Physics Letters, Vol. 46, pp. 8688, 1985.
33. V. Lehmann and S. Ronnebeck, "The physics of macropore formation in low-doped p-type silicon", Journal of the Electrochemical Society, Vol. 146, pp. 29682975, 1999.
34. X. Badel, "Electrochemically etched pore arrays in silicon for X-ray imaging detectors", Ph.D Thesis, The Royal Institute of Technology, pp. 521, 2005.
35. S. O. Kasap, Optoelectronics and photonics, Canada: Prentice Hall, 2001.
36. K. Tsujino and M. Matsumura, "Formation of a low reflective surface on crystalline silicon solar cells by chemical treatment using Ag electrodes as the catalyst", Solar Energy Material and Solar Cells, Vol. 90, pp. 15271532, 2006.
37. J. S. Yoo, I. O. Parm, U. Gangopadhyay, Kyunghae Kim, S. K. Dhungel, D. Mangalaraj, and J. Yi, "Black silicon layer formation for application in solar cells", Solar Energy Material and Solar Cells, Vol. 90, pp. 30853093, 2006.
38. B. C. Chakravarty, J. Tripathi, A. K. Sharma, R. Kumar, K. N. Sood, S. B. Samanta, and S. N. Singh, "The growth kinetics and optical confinement studies of porous Si for application in terrestrial Si solar cells as antireflection coating", Solar Energy Material and Solar Cells, Vol. 91, pp. 701706, 2007.
39. C. H. Sun, W. L. Min, N. C. Lin, P. Jiang and B. Jiang "Templated fabrication of large area subwavelength antireflection gratings on silicon", Applied physics letters, Vol. 91, 231105, 2007.
40. C. H. Sun, P. Jiang and B. Jiang “broadband moth-eye antireflection coatings on silicon", Applied physics letters, Vol. 92, 061112, 2008.
41. K. Nishioka, S. Horita, K. Ohdaira, and H. Matsumura, "Antireflection subwavelength structure of silicon surface formed by wet process using catalysis of single nano-sized gold particle", Solar Energy Material and Solar Cells, Vol. 92, pp. 919922, 2008.
42. A. W. Blakers and M. A. Green, "20% efficiency silicon solar cells", Applied Physics Letter, Vol. 48, No. 3, pp. 215217, 1986.
43. R. R. King, R. A. Sinton, and R. M. Swanson, "Front and back surface fields for point-contact solar cells ", IEEE, pp. 538544, 1988.
44. A. Metz and R. Hezel "Record efficiencies above 21% for MIS-contacted diffused junction silicon solar cells ", IEEE, pp. 283286, 1997.
45. Rudolf hezel, "High-efficiency OECO Czochralski-silicon solar cells for mass production", Solar Energy Materials Energy & Solar Cells, Vol. 74, pp. 2533, 2002.
46. R. Hezel, "Novel back contact silicon solar cells designed for very high efficiencies and low-cost mass production ", IEEE, pp. 114117, 2002.
47. J.W. Muller, A. Merkle and R. Hezel, "Self-aligning, industrially feasible back contacted silicon solar cells with efficiencies >18 %", FVS PV-UNI-NETZ, Workshop, pp. 141145, 2003.
48. S. W. Glunz, E. Schneiderlöchner, D. Kray, A. Grohe, M. Hermle, H. Kampwerth, R. Preu, and G. Willeke "Laser-fired contact silicon solar cells on p-and n-substrates", 19th European Photovoltaic Solar Energy Conference, pp. 408411, 2004.
49. M. Hofmann, S. Janz, C. Schmidt, S. Kambor, D. Suwito, N. Kohn, J. Rentsch, R. Preu and S. W. Glunz "Recent developments in rear-surface passivation at Fraunhofer ISE", Solar Energy materials & solar cells, pp.10741078, 2009.
50. F. Granek, M. Hermle, D. M. Huljic, O. S. Wittmann and S. W. Glunz "Enhanced lateral current transport via the front N+ diffused layer of N-type high-efficiency back-junction back-contact silicon solar cells", Prog. in Photovolataics: Res. Appl., Vol. 17, pp. 4756, 2009.
51. N. P. Harder, S. Hermann, A. Merkle, T. Neubert, T. Brendemuhl, P. Engelhart, R. Meyer and R. brendel "Laser-processed high-efficiency silicon RISE-EWT solar cells and characterisation", Physica Status Solidi C, pp.736743, 2009.
52. 劉時郡, "單晶矽太陽能電池製程改善及退火處理之研究", 崑山科技大學電機工程學系, 碩士論文, 2007.
53. 李信憲, "黑色矽巨孔洞陣列結構應用於矽晶太陽能電池之研究", 國立台灣師範大學機電科技學系, 碩士論文, 2009
54. 羅嘉佑, "晶圓穿孔陣列之光輔助電化學蝕刻特性研究", 國立台灣師範大學機電科技學系, 碩士論文, 2008
55. V. Lehmann and U. Grüning, "The limits of macropore array fabrication", Thin Solid Films, Vol. 297, pp. 1317, 1997.
56. R.E. Camacho, et al., “Carbon Nanotube Arrays for Photovoltaic Applications,” Nanomaterials for Electronic Applications, pp. 3942, 2007.
57. V. Y. Yerokhov, R. Hezel, M. Lipinski, R. Ciach, H. Nagel, A. Mylyanych, and P. Panek, "Cost-effective methods of texturing for silicon solar cells", Solar Energy Materials and Solar Cells, Vol. 72 (2002) pp. 291-298.
58. http://www.pvcdrom.pveducation.org/index.html
59. http://www.udel.edu/igert/pvcdrom/APPEND/AM0AM1_5.xls
60. J. Zhao, A. Wang and M. A. Green, "24.5% Efficiency silicon PERT Cells on MCZ substrates and 24.7% efficiency PERL cells on FZ substrates ", Progress in Photovoltaics: Research and Applications, Vol. 7, pp. 471474, 1999.
61. J. Zhao, A. Wang, P. P. Altermatt, and M. A. Green, "High efficiency PERT cell on N-type silicon substrates", IEEE, pp. 218221, 2002.