簡易檢索 / 詳目顯示

研究生: 江晞賢
Chiang, Hsi-Hsien
論文名稱: 官能化聚苯胺薄膜之彈性、摩潤以及結構性質關聯性之研究
Investigation of the Correlations between Elastic, Tribological, and Structural Properties in Functionalized Polyaniline Thin Films
指導教授: 邱顯智
Chiu, Hsiang-Chih
口試委員: 莊程豪
Chuang, Cheng-Hao
張宜仁
Chang, Yi-Ren
邱顯智
Chiu, Hsiang-Chih
口試日期: 2021/07/09
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 60
中文關鍵詞: 原子力顯微鏡正丁硫醇官能化聚苯胺摩擦係數彈性模量
英文關鍵詞: Atomic force microscopy, Butylthio-functionalized polyaniline, Friction coefficient, Elasticity modulus
研究方法: 實驗設計法觀察研究
DOI URL: http://doi.org/10.6345/NTNU202100771
論文種類: 學術論文
相關次數: 點閱:245下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們利用了原子力顯微鏡研究「正丁硫醇官能化的聚苯胺」,針對聚苯胺薄膜的分子排列有序程度與其彈性模量和摩擦特性的關係進行探討。我們使用攪拌聚苯胺溶液的方式來控制聚苯胺薄膜之分子排列的有序程度,並每攪拌24小時抽取出聚苯胺溶液滴製在基板上以製成聚苯胺薄膜以供研究。聚苯胺長鏈分子在溶液中很容易自我糾纏成團,而攪拌時溶液中所產生的剪切力則可以將自我糾纏的聚苯胺分子拉展開來。因此,在我們滴製聚苯胺薄膜樣品的過程中,已伸展開的長鏈聚苯胺分子便更能在溶劑揮發的時候,自行排列成有秩序的結構。我們也利用了「X光繞射」和「掃描電子顯微鏡」確認了聚苯胺薄膜的分子排列結構,並確定了聚苯胺薄膜在攪拌時間為72小時的時候,具有最有秩序的分子排列結構。隨後,我們使用原子力顯微鏡的「峰值力定量奈米力學應用模式」和「側向力顯微術」測量了聚苯胺薄膜的表面形貌、彈性模量、吸附力變化以及樣品與探針間的動摩擦係數。我們發現,分子排列結構越有秩序的聚苯胺薄膜,其彈性模量越大且動摩擦係數越小。這是因為彈性模量較大的聚苯胺薄膜,其分子排列結構較為緻密,因此當原子力顯微鏡的探針施壓在其表面時所產生的形變程度便較小、對探針所產生的能量耗散也較小,進而導致側向力顯微術測量出較小的動摩擦係數。反之,彈性模量較小也就是較軟的聚苯胺薄膜,其所被測量出的動摩擦係數則較大。綜觀所究,我們成功證實可以利用「調整攪拌時間」的方式控制聚苯胺薄膜結構分子排列的有序程度,進而調控聚苯胺薄膜的彈性及摩擦性質。

    We studied the influence of structural order on the elastic and the frictional properties on the butylthio-functionalized polyaniline (PAni-SBu) thin films by atomic force microscopy (AFM). To manipulate the structural order of the films, the PAni-SBu powers were dissolved into N-Methyl-2-pyrrolidone solvent and stirred continuously. The PAni-SBu thin films were fabricated by the drop-cast method approximately every 24 hours. Because of the mechanical stirring, the highly coiled polymer chains of PAni can be stretched in the solution. Therefore, when drop-cast on a substrate surface, the PAni-SBu chains may self-assemble into more ordered structures when solvents evaporate. By using X-ray diffraction and scanning electron microscopy, we found that the structural order of PAni-SBu thin films strongly depends on the solution stirring time. However, beyond an optimal stirring time, the structure of the film becomes disordered again because of the oxidation of polymer chains resulting from the prolonged stir in ambient conditions. By using AFM-based techniques, we found that both the out-of-plane elastic moduli and the friction coefficients of the films highly depend on the solution stirring time used prior to the film fabrication. While the polymer films that have higher structural order exhibit larger film elasticity and smaller friction coefficient, the films possess more disordered structure were found to be softer and have larger friction coefficients. Our results demonstrate that it is possible to control the degree of structure order of PAni-SBu thin films by mechanical stirring of polymer solution, and then manipulate the elastic and frictional properties of the films.

    第 1 章 緒論 1 第 2 章 原子力顯微鏡 4 2.1 原子力顯微鏡之工作原理 5 2.2 原子力顯微鏡之成像模式 7 2.2.1 接觸模式 7 2.2.2 非接觸模式 8 2.2.3 輕敲模式 8 2.3 作用力與間距之關係 9 2.4 探針的彈性係數調校與光槓桿系數 10 2.4.1 熱調法 12 2.4.2 薩德法 13 2.5 接觸力學在原子力顯微鏡之應用 14 2.5.1 峰值力輕敲應用模式(PeakForce Tapping) 16 2.5.2 峰值力定量奈米力學應用模式(PeakForce QNM) 17 2.6 側向力顯微術(LFM) 19 2.6.1 探針的扭轉敏感參數(扭轉係數) 21 第 3 章 輔助實驗技術 27 3.1 X光繞射 27 3.2 金屬濺鍍 29 3.3 掃描電子顯微鏡 29 第 4 章 聚苯胺樣品及其製備 31 4.1 聚苯胺薄膜樣品的製備 33 4.2 聚苯胺截面樣品的製備 35 第 5 章 實驗成果及討論 37 5.1 聚苯胺薄膜之層狀結構的變化 37 5.2 聚苯胺薄膜之截面結構的變化 39 5.3 聚苯胺薄膜之表面奈米力學性質的變化 41 5.3.1 聚苯胺薄膜之表面形貌的變化 41 5.3.2 聚苯胺薄膜之彈性模量的變化 43 5.3.3 聚苯胺薄膜之表面吸附力 44 5.4 聚苯胺薄膜之表面摩擦性質的變化 46 5.5 彈性模量與表面摩擦性質之間的關係 47 5.5.1 探針與聚苯胺薄膜之間的剪切應力 τ 49 5.5.2 探針與聚苯胺薄膜之間的接觸參數 λ 50 5.5.3 聚苯胺薄膜的彈性模量 Esamp 52 第 6 章 結論 54 參考文獻 56

    1 https://en.wikipedia.org/wiki/There%27s_Plenty_of_Room_at_the_Bottom
    2 https://edition.cnn.com/2015/01/29/tech/mci-nanobots-eth/index.html
    3 Ćirić-Marjanović, G. Recent advances in polyaniline research: Polymerization mechanisms, structural aspects, properties and applications. Synthetic metals 177, 1-47 (2013).
    4 Grgur, B. et al. Corrosion of mild steel with composite polyaniline coatings using different formulations. Progress in Organic Coatings 79, 17-24 (2015).
    5 Liu, S., Liu, D. & Pan, Z. The effect of polyaniline (PANI) coating via dielectric-barrier discharge (DBD) plasma on conductivity and air drag of polyethylene terephthalate (PET) yarn. Polymers 10, 351 (2018).
    6 Fratoddi, I., Venditti, I., Cametti, C. & Russo, M. V. Chemiresistive polyaniline-based gas sensors: A mini review. Sensors and Actuators B: Chemical 220, 534-548 (2015).
    7 Baker, C. O. et al. Monolithic actuators from flash‐welded polyaniline nanofibers. Advanced Materials 20, 155-158 (2008).
    8 Cui, S., Zheng, Y., Liang, J. & Wang, D. Triboelectrification based on double-layered polyaniline nanofibers for self-powered cathodic protection driven by wind. Nano Research 11, 1873-1882 (2018).
    9 Okamoto, Y. & Brenner, W. in Polymers 125-158 (Reinhold, 1964).
    10 Chen, P.-Y., Hung, H.-L., Han, C.-C. & Chiu, H.-C. Correlation between Nanoscale Elasticity, Semiconductivity, and Structural Order in Functionalized Polyaniline Thin Films. Langmuir 36, 4153-4164 (2020).
    11 Mei, J. & Bao, Z. Side chain engineering in solution-processable conjugated polymers. Chemistry of Materials 26, 604-615 (2014).
    12 Han, C. C., Yang, K. F., Hong, S. P., Balasubramanian, A. & Lee, Y. T. Syntheses and characterizations of aniline/butylthioaniline copolymers: Comparisons of copolymers prepared by the new concurrent reduction and substitution route and the conventional oxidative copolymerization method. Journal of Polymer Science Part A: Polymer Chemistry 43, 1767-1777 (2005).
    13 Han, C.-C. et al. Highly conductive new aniline copolymers containing butylthio substituent. Macromolecules 34, 587-591 (2001).
    14 Ikkala, O. & ten Brinke, G. Functional materials based on self-assembly of polymeric supramolecules. science 295, 2407-2409 (2002).
    15 Dufour, B. et al. Low T g, stretchable polyaniline of metallic-type conductivity: role of dopant engineering in the control of polymer supramolecular organization and in the tuning of its properties. Chemistry of materials 15, 1587-1592 (2003).
    16 Jana, T., Chatterjee, J. & Nandi, A. K. Sulfonic acid doped thermoreversible polyaniline gels. 3. Structural investigations. Langmuir 18, 5720-5727 (2002).
    17 Kang, B. et al. Side-chain-induced rigid backbone organization of polymer semiconductors through semifluoroalkyl side chains. Journal of the American Chemical Society 138, 3679-3686 (2016).
    18 Inigo, A. R. et al. Structure and charge transport properties in MEH-PPV. Synthetic metals 139, 581-584 (2003).
    19 Inigo, A. R. et al. Disorder controlled hole transport in MEH-PPV. Physical Review B 69, 075201 (2004).
    20 Sirringhaus, H. et al. Two-dimensional charge transport in self-organized, high-mobility conjugated polymers. Nature 401, 685-688 (1999).
    21 Kline, R. J., McGehee, M. D. & Toney, M. F. Highly oriented crystals at the buried interface in polythiophene thin-film transistors. Nature Materials 5, 222-228 (2006).
    22 Kim, Y. et al. in Materials For Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group 63-69 (World Scientific, 2011).
    23 Ao, Z. & Li, S. Temperature- and thickness-dependent elastic moduli of polymer thin films. Nanoscale research letters 6, 1-6 (2011).
    24 Maeda, N., Chen, N., Tirrell, M. & Israelachvili, J. N. Adhesion and friction mechanisms of polymer-on-polymer surfaces. Science 297, 379-382 (2002).
    25 Vijayakumar, V. et al. Bringing conducting polymers to high order: toward conductivities beyond 105 S cm− 1 and thermoelectric power factors of 2 mW m− 1 K− 2. Advanced Energy Materials 9, 1900266 (2019).
    26 Kajiyama, T., Tanaka, K. & Takahara, A. Surface molecular motion of the monodisperse polystyrene films. Macromolecules 30, 280-285 (1997).
    27 Hammerschmidt, J. A., Gladfelter, W. L. & Haugstad, G. Probing polymer viscoelastic relaxations with temperature-controlled friction force microscopy. Macromolecules 32, 3360-3367 (1999).
    28 Ghorbal, A. & Brahim, A. B. Evaluation of nanotribological behavior of amorphous polystyrene: The macromolecular weight effect. Polymer testing 32, 1174-1180 (2013).
    29 Stafford, C. M., Vogt, B. D., Harrison, C., Julthongpiput, D. & Huang, R. Elastic moduli of ultrathin amorphous polymer films. Macromolecules 39, 5095-5099 (2006).
    30 Hutter, J. L. & Bechhoefer, J. Calibration of atomic‐force microscope tips. Review of Scientific Instruments 64, 1868-1873 (1993).
    31 Butt, H.-J., Cappella, B. & Kappl, M. Force measurements with the atomic force microscope: Technique, interpretation and applications. Surface Science Reports 59, 1-152 (2005).
    32 Cook, S. et al. Practical implementation of dynamic methods for measuring atomic force microscope cantilever spring constants. Nanotechnology 17, 2135 (2006).
    33 Sader, J. E., Chon, J. W. & Mulvaney, P. Calibration of rectangular atomic force microscope cantilevers. Review of Scientific Instruments 70, 3967-3969 (1999).
    34 Sader, J. E., Lu, J. & Mulvaney, P. Effect of cantilever geometry on the optical lever sensitivities and thermal noise method of the atomic force microscope. Review of Scientific Instruments 85, 113702 (2014).
    35 Sader, J. E. et al. Spring constant calibration of atomic force microscope cantilevers of arbitrary shape. Review of Scientific Instruments 83, 103705 (2012).
    36 https://www.nanoandmore.com/AFM-Probe-CP-CONT-SiO
    37 http://www.ampc.ms.unimelb.edu.au/afm/webapp.html
    38 Johnson, K. L. Contact mechanics. (Cambridge university press, 1987).
    39 Hertz, H. Ueber die Beruhrung fester elasticher Korper (On Contact Between Elastic Bodies). Journal fur die reine und angewandte Mathematik 156 (1882).
    40 Derjaguin, B. V., Muller, V. M. & Toporov, Y. P. Effect of contact deformations on the adhesion of particles. Journal of Colloid and Interface Science 53, 314-326 (1975).
    41 https://commons.wikimedia.org/wiki/File:WikipediabilderKap_4.jpg
    42 Matzelle, T., Geuskens, G. & Kruse, N. Elastic properties of poly(N-isopropylacrylamide) and poly(acrylamide) hydrogels studied by scanning force microscopy. Macromolecules 36, 2926-2931 (2003).
    43 Kaemmer, S. Introduction to Bruker's ScanAsyst and PeakForce Tapping atomic force microscopy technology AFM. Bruker Nano Surfaces Division Application Notes 133 (2011).
    44 林宏旻, 陳彥甫 & 張家榮. 新世代原子力顯微鏡成像技術:PeakForce Tapping模式與其衍生量測模式. 科儀新知 34, 35-45 (2012).
    45 Varenberg, M., Etsion, I. & Halperin, G. An improved wedge calibration method for lateral force in atomic force microscopy. Review of scientific instruments 74, 3362-3367 (2003).
    46 Saha, B., Liu, E. & Tor, S. B. in Nano-tribology and Materials in MEMS 1-51 (Springer, 2013).
    47 Rothbart, H. (McGraw-Hill, NY, 1996).
    48 朱恩德. 因奈米級侷限水膜誘發電洞摻雜的單層石墨烯於二氧化矽基板表面的奈米級摩擦力學之特性. 國立臺灣師範大學物理學系學位論文, 1-52 (2019).
    49 https://www.memsnet.org/material/siliconsibulk/
    50 Bragg, W. H. & Bragg, W. L. The reflection of X-rays by crystals. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 88, 428-438 (1913).
    51 Huang, J., Virji, S., Weiller, B. H. & Kaner, R. B. Polyaniline nanofibers: facile synthesis and chemical sensors. Journal of the American Chemical Society 125, 314-315 (2003).
    52 Mosqueda, Y. et al. Preparation and characterization of LiNi0. 8Co0. 2O2/PANI microcomposite electrode materials under assisted ultrasonic irradiation. Journal of Solid State Chemistry 179, 308-314 (2006).
    53 Wang, H. L., Romero, R. J., Mattes, B. R., Zhu, Y. & Winokur, M. J. Effect of processing conditions on the properties of high molecular weight conductive polyaniline fiber. Journal of Polymer Science Part B: Polymer Physics 38, 194-204 (2000).
    54 Loh, X. X. et al. Crosslinked integrally skinned asymmetric polyaniline membranes for use in organic solvents. Journal of Membrane Science 326, 635-642 (2009).
    55 Radhakrishnan, S., Siju, C. R., Mahanta, D., Patil, S. & Madras, G. Conducting polyaniline–nano-TiO2 composites for smart corrosion resistant coatings. Electrochimica Acta 54, 1249-1254 (2009).
    56 李星玮, 居明 & 李晓宣. 用于腐蚀与防护的导电聚苯胺研究新进展. 材料导报 15, doi:10.3321/j.issn:1005-023X.2001.03.015 (2001).
    57 Araujo, W. S., Margarit, I. C. P., Ferreira, M., Mattos, O. R. & Neto, P. L. Undoped polyaniline anticorrosive properties. Electrochimica Acta 46, 1307-1312 (2001).
    58 Unverdorben, O. Ueber das Verhalten der organischen Körper in höheren Temperaturen. Annalen der Physik 84, 397-410 (1826).
    59 MacDiarmid, A., Chiang, J., Richter, A., Epstein & AJ. Polyaniline: a new concept in conducting polymers. Synthetic Metals 18, 285-290 (1987).
    60 张广平 & 毕先同. 聚苯胺在一些有机溶剂中溶解性. 高分子学报 1, 55-59 (1994).
    61 Pouget, J. P., Jozefowicz, M. E., Epstein, A. J., Tang, X. & MacDiarmid, A. G. X-ray structure of polyaniline. Macromolecules 24, 779-789 (1991).
    62 Mattoso, L. & Bulhoes, L. Synthesis and characterization of poly (o-anisidine) films. Synthetic Metals 52, 171-181 (1992).
    63 Alam, J., Dass, L. A., Alhoshan, M. S., Ghasemi, M. & Mohammad, A. W. Development of polyaniline-modified polysulfone nanocomposite membrane. Applied Water Science 2, 37-46 (2012).
    64 Fryczkowska, B., Piprek, Z., Sieradzka, M., Fryczkowski, R. & Janicki, J. Preparation and properties of composite PAN/PANI membranes. International Journal of Polymer Science 2017 (2017).
    65 Bowden, F. P., Bowden, F. P. & Tabor, D. The friction and lubrication of solids. Vol. 1 (Oxford university press, 2001).
    66 Greenwood, J. in Fundamentals of friction: macroscopic and microscopic processes 57-76 (Springer, 1992).
    67 https://www.memsnet.org/material/siliconsibulk/

    無法下載圖示 電子全文延後公開
    2026/01/01
    QR CODE