研究生: |
謝育儒 Hsieh, Yu-Ju |
---|---|
論文名稱: |
多種不同結構微米級石墨對鋁離子電池電化學表現之影響研究 The Study on Electrochemical Performance of Various Micro-graphite Materials with Different Structures for Aluminum-ion Battery |
指導教授: |
陳家俊
Chen, Chia-Chun |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 74 |
中文關鍵詞: | 鋁離子電池 、離子液體 、微米級石墨 |
英文關鍵詞: | Aluminum-ion battery, ionic liquid, micro-graphite |
DOI URL: | https://doi.org/10.6345/NTNU202204216 |
論文種類: | 學術論文 |
相關次數: | 點閱:124 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近期發表於期刊上之鋁離子電池是以鋁金屬當作負極、石墨當作正極
以及使用離子液體作為電解液。因鋁離子電池具有低成本、低可燃性、
高速率充放電、長圈數的壽命以及牽涉三個電子的氧化還原反應使其
成為鋁離子電池的特點。
本篇研究主軸是將不同結構之微米級石墨應用在鋁離子電池正極材
料上,並對其電化學表現和其結構特性相關性做整理歸納。
本篇研究之微米級石墨有 SP-1 天然磷片石墨、GNPs (石墨烯奈米薄
片)、KS6、MCMB(介相微碳球)、島久石墨以及鍛燒至 1000℃的蔗糖。
從 X光繞射儀結果可以看出不同微米石墨的[002]特徵峰強度均不同
且拉曼光譜可看出不同石墨 D band 和 G band 的比值差異,以掃描式
電子顯微鏡(SEM)也可以看出不同石墨均有不一樣的粒徑大小,根據
X 光繞射儀、拉曼光譜以及掃描式電子顯微鏡(SEM)得知當石墨的結
晶性、缺陷多寡以及粒徑尺寸都會影響到鋁離子電池的電化學表現。
The aluminum-ion battery (AIB) has been demonstrated recently based on the materials of Al foil anode, graphite cathode, and ionic liquid electrolyte, which show promising features, including low-cost electrode materials, low flammability, three-electron redox reaction, high-rate charging, and long cycle life.
Here, we present the performance of aluminum-ion battery with graphite materials in multiple different microstructures. Six different kinds of micro-graphite materials are rendered—SP-1 natural flake graphite, GNPs(Graphene nanoplatelets), KS6, MCMB(Mesocarbon microbeads), Osaka graphite, and thermal-annealed sucrose. The six types of graphite materials were carefully examined under the X-ray diffraction, Scanning electron microscope, and Raman spectroscopy, and have revealed difference in graphite layers, individual sizes, crystallinity, and defect level, which dominate the electrochemical performance of the aluminum-ion battery.
參考文獻
1. H. Z. Wang, D. Y. C. Leung, M. K. H. Leung, M. Ni, A review on hydrogen production using aluminum and aluminum alloys. Renewable and Sustainable Energy Reviews 13, 845-853 (2009).
2. Q. Li, N. J. Bjerrum, Aluminum as anode for energy storage and conversion: a review. Journal of Power Sources 110, 1-10 (2002).
3. C. Li, W. Ji, J. Chen, Z. Tao, Metallic Aluminum Nanorods: Synthesis via Vapor-Deposition and Applications in Al/air Batteries. Chemistry of Materials 19, 5812-5814 (2007).
4. A. J. Bard, L. R. Faulkner, Electrochemical methods: fundamentals and applications. (Wiley New York, 1980), vol. 2.
5. J. S. Wilkes, J. A. Levisky, R. A. Wilson, C. L. Hussey, Dialkylimidazolium chloroaluminate melts: a new class of room-temperature ionic liquids for electrochemistry, spectroscopy and synthesis. Inorganic Chemistry 21, 1263-1264 (1982).
6. J. J. Lee, I. T. Bae, D. A. Scherson, B. Miller, K. A. Wheeler, Underpotential Deposition of Aluminum and Alloy Formation on Polycrystalline Gold Electrodes from AlCl3 / EMIC Room‐Temperature Molten Salts. Journal of The Electrochemical Society 147, 562-566 (2000).
7. T. Jiang, M. J. Chollier Brym, G. Dubé, A. Lasia, G. M. Brisard, Electrodeposition of aluminium from ionic liquids: Part I—electrodeposition and surface morphology of aluminium from aluminium chloride (AlCl3)–1-ethyl-3-methylimidazolium chloride ([EMIm]Cl) ionic liquids. Surface and Coatings Technology 201, 1-9 (2006).
8. F. Endres, D. MacFarlane, A. Abbott, Electrodeposition from ionic liquids. (John Wiley & Sons, 2008).
9. S.-J. Pan, W.-T. Tsai, J.-K. Chang, I. W. Sun, Co-deposition of Al–Zn on AZ91D magnesium alloy in AlCl3–1-ethyl-3-methylimidazolium chloride ionic liquid. Electrochimica Acta 55, 2158-2162 (2010).
10. N. Jayaprakash, S. K. Das, L. A. Archer, The rechargeable aluminum-ion battery. Chemical Communications 47, 12610-12612 (2011).
11. G. BROWN, M. PARANTHAMAN, S. DAI, N. DUDNEY, A. MANTHIRAM, T. MCINTYRE, H. LIU. (WO Patent 2,012,044,678, 2012).
12. N. S. Hudak, Chloroaluminate-Doped Conducting Polymers as Positive Electrodes in Rechargeable Aluminum Batteries. The Journal of Physical Chemistry C, (2014)10.1021/jp500593d).
13. M. Armand, F. Endres, D. R. MacFarlane, H. Ohno, B. Scrosati, Ionic-liquid materials for the electrochemical challenges of the future. Nat Mater 8, 621-629 (2009).
14. L. D. Reed, E. Menke, The Roles of V2O5 and Stainless Steel in Rechargeable Al–ion Batteries. Journal of The Electrochemical Society 160, A915-A917 (2013).
15. J. V. Rani, V. Kanakaiah, T. Dadmal, M. S. Rao, S. Bhavanarushi, Fluorinated Natural Graphite Cathode for Rechargeable Ionic Liquid Based Aluminum-ion Battery. Journal of The Electrochemical Society 160, A1781-A1784 (2013).
16. P. Wasserscheid, W. Keim, Ionic Liquids—New “Solutions” for Transition Metal Catalysis. Angewandte Chemie International Edition 39, 3772-3789 (2000).
17. R. J. Borg, G. J. Dienes, An introduction to solid state diffusion. (Academic Press, 1988).
18. P. R. Gifford, J. B. Palmisano, An Aluminum/Chlorine Rechargeable Cell Employing a Room Temperature Molten Salt Electrolyte. Journal of The Electrochemical Society 135, 650-654 (1988).
19. R. T. Carlin, H. C. De Long, J. Fuller, P. C. Trulove, Dual Intercalating Molten Electrolyte Batteries. Journal of The Electrochemical Society 141, L73-L76 (1994).
20. S. Takahashi, L. A. Curtiss, D. Gosztola, N. Koura, M.-L. Saboungi, Molecular Orbital Calculations and Raman Measurements for 1-Ethyl-3-methylimidazolium Chloroaluminates. Inorganic Chemistry 34, 2990-2993 (1995).
21. S. Takahashi, N. Koura, S. Kohara, M. L. Saboungi, L. A. Curtiss, Technological and scientific issues of room-temperature molten salts. Plasmas & Ions 2, 91-105 (1999).
22. X. Zhang, N. Sukpirom, M. M. Lerner, Graphite intercalation of bis(trifluoromethanesulfonyl) imide and other anions with perfluoroalkanesulfonyl substituents. Materials Research Bulletin 34, 363-372 (1999).
23. B. Özmen-Monkul, M. M. Lerner, The first graphite intercalation compounds containing tris(pentafluoroethyl)trifluorophosphate. Carbon 48, 3205-3210 (2010).
24. F. Tuinstra, J. L. Koenig, Raman Spectrum of Graphite. The Journal of Chemical Physics 53, 1126-1130 (1970).
25. L. J. Hardwick, M. Hahn, P. Ruch, M. Holzapfel, W. Scheifele, H. Buqa, F. Krumeich, P. Novák, R. Kötz, An in situ Raman study of the intercalation of supercapacitor-type electrolyte into microcrystalline graphite. Electrochimica Acta 52, 675-680 (2006).
26. L. J. Hardwick, P. W. Ruch, M. Hahn, W. Scheifele, R. Kötz, P. Novák, In situ Raman spectroscopy of insertion electrodes for lithium-ion batteries and supercapacitors: First cycle effects. Journal of Physics and Chemistry of Solids 69, 1232-1237 (2008).
27. A. C. Ferrari, J. Robertson, Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon. Physical Review B 64, 075414 (2001).
28. Meng-Chang Lin. An ultrafast rechargeable aluminium-ion battery.Nature 520, 324–328 (16 April 2015) doi:10.1038/nature14340