簡易檢索 / 詳目顯示

研究生: 陳亭君
論文名稱: 探討國三學生的工作記憶容量與讀、解計算題與圖文題表現之關連性
The relationship between working memory capacity of ninth graders with their performance on reading and solving computational problems and mathematical word problem with diagram.
指導教授: 譚克平
學位類別: 碩士
Master
系所名稱: 科學教育研究所
Graduate Institute of Science Education
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 179
中文關鍵詞: 讀題工作記憶數學解題
論文種類: 學術論文
相關次數: 點閱:251下載:17
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究的主要目的在於瞭解國三學生解數學計算題與圖文題時,其讀題方式與解題表現之間的關係,並瞭解學生的工作記憶容量、學業成就、性別等變因與讀題方式之間的關連性。
    本研究首先收集國三學生的工作記憶容量資料,以建立常模與信效度;繼而以質性研究的方式,針對36位不同背景的國三學生進行個別施測與訪談。施測時使用電腦軟體The Restricted Focus Viewer(以下簡稱RFV)作為收集讀題資料的工具,此軟體能在電腦螢幕呈現數學題目,只有滑鼠附近區域為清晰,學生藉由操作滑鼠以控制閱讀區域,軟體則記錄下學生解題時的讀題過程。學生解題活動結束後,立即進行深入訪談,以瞭解學生解題錯誤的原因。
    本研究所獲得的工作記憶容量資料,主要以量的方式分析建立常模,而學生的讀解題與訪談資料則以質的分析為主,描述性統計為輔,對於學生的讀題方式與解題表現進行分析,以探討讀題方式與解題表現之間的關聯性,並了解與讀題相關的變因為何。
    本研究的結果顯示:(一)學生的讀題方式與學生的解題方式有關連性,讀題的時間與次數較少,會造成讀錯或忽略題目關鍵句等情形,使得解題錯誤;(二)工作記憶容量高低與學生的讀題方式有關,工作記憶容量高者傾向於花較少的次數與時間讀題;(三)數學學業成就與學生的讀題方式有關,成就高者傾向於花較少的次數與時間讀計算題,但在圖文題部分會花較多次數與時間讀題;(四)性別與學生的讀題方式有關,男性傾向於花較少的次數與時間讀題。
    根據本研究的結果,可提出下列建議:(一)學校教師在教授數學知識之餘,應強調「讀題」的重要性;(二)在教「讀題」時,可強調完整瀏覽、反覆閱讀與放慢閱讀的速度。在未來的研究方向,可考慮不同的研究對象、題目型態與領域以及加入「閱讀理解能力」等因素,以更進一步探討讀題與解題之間的關連性。

    This research aims to understand the relationship between the way ninth graders read the problem and their performance in solving computational and word problem with diagram. It also aims to understand the relationship between the way they read the problem and other variables: working memory capacity, academic performance, and gender.
    This research first collects the data on students’ working memory capacity in order to build the norm, reliability, and validity. Then individual tests and interviews are conducted for 36 students with different backgrounds as the quality research. The software, Restricted Focus Viewer (RFV), is used to collect the information on how students read the problem. This software presents problems on the computer screen. Only the area near the pointer can be seen clearly. Thus the software can record the process when students read the problem. After students finish solving problems, the in-depth interview is done immediately in order to find out the reason why students make mistakes when solving problems.
    The data on working memory capacity is analyzed mainly in quantity to build the norm, while the information on students’ reading problems and the interview is analyzed mainly in quality, accompanied by descriptive statistics. The method aims to analyze the relationship between the way students read and solve the question, and to understand what the variables are that affect how students read problems.
    The research result shows: first, the way students read problems is relative to performance of solving problems. Students who spend less time reading problems tend to make mistakes in solving problems; second, the capacity of working memory is relative to the way students read problems. Students with a larger working memory capacity have the tendency to spend less time reading the question; third, the academic performance on math has to do with students’ reading the question. Students with higher academic performance are prone to spend less time on computational question, but they spend more time on word problem with diagram; fourth, gender is relative to how students read problems. Male students tend to spend less time reading the question.
    According to the research result, the following are the suggestions: first, school teachers should emphasize the importance of reading the question in teaching; second, as to the teaching on how to read problems, complete skimming, repeated reading, and reading at a slower rate can be put a premium on. As to the future research, different research subjects, question patterns, subject fields, and reading comprehension ability can be further analyzed in order to unveil the hidden connection between reading and solving problems.

    第一章 緒論 第一節 研究動機1 第二節 研究目的5 第三節 研究問題6 第四節 名詞界定7 第五節 研究限制8 第二章 文獻探討 第一節 RFV軟體的相關研究9 第二節 工作記憶13 第三節 數學解題錯誤的類型與成因22 第三章 研究方法 第一節 研究設計28 第二節 研究對象29 第三節 研究工具與資源32 第四節 研究步驟與過程52 第五節 資料處理56 第四章 資料分析 第一節 國三學生的工作記憶容量常模63 第二節 學生解計算題時讀題方式與解題表現之關連性69 第三節 學生解計算題時其讀題方式與學業成就、工作記憶與性別之關108 第四節 學生解圖文題時讀題方式與解題表現之關聯性119 第五節 學生讀圖文題方式與學業成就、工作記憶與性別之關係146 第五章 結論與建議 第一節 結果與討論150 第二節 建議155 參考文獻159 附錄 附錄一 參與RFV解題研究的受試學生背景164 附錄二 數字符號工作記憶容量測驗題目167 附錄三 數字符號工作記憶容量測驗評分規則169 附錄四 語文工作記憶測驗題目170 附錄五 視覺空間工作記憶測驗題目171 附錄六 RFV參數設定導引172 附錄七 RFV數學解題題本173 附錄八 RFV output data 資料處理175

    中文部分
    李芳樂(民85),數學錯誤成因的探討。香港中文大學初等教育學報,4(1),77-82。
    陳雅惠(民88)從邏輯推理能力探討學生犯錯的成因— 以對數解題錯誤為例。國立台灣師範大學科學教育研究所碩士論文,台北,未出版。
    周裕欽(民88)工作記憶與中文閱讀的相關研究-多重模式理論與容量理論的連結)臺東師範學院/國民教育研究所碩士論文,台東,未出版。
    蔣宇立(民89)學習數學符號所產生焦慮之研究-從後設認知的觀點對國一學生進行研究,國立彰化師範大學數學研究所碩士論文,彰化,未出版。
    譚克平(民93)從91年國中學測第一試數學科的表現談國中數學教育。中等教育,55(3),100-110.
    閻育蘇(譯)(民80)。G. Polya著。怎樣解題。台北:九章。
    楊治良、郭力平、王沛、陳寧(民90)。記憶心理學。台北:五南。
    楊瑞智(民79):四則運算的錯誤類型研究及教學上的應用。國教月刊,36(9,10),18-25。
    鄭昭明(民82)認知心理學。台北:桂冠。

    英文部分
    Anderson, J. R.(1995)Learning and Memory an integrated approach(2nd ed)N. Y. : W.
    Ashlock , R. B.(1994). Error patterns in computation: semi-programmed approach ( 6th ed.). Columbus, OH: Merrill.
    Babbitt, B. C. (1990). Error pattern in problem solving. Austin Texas: Council for learning disabilities 12th international conference. (pp.1-13)
    Baddeley A., Chincotta D., & Adlam A.(2001)Working Memory and the Control of Action:Evidence from task switching.Jounal of Experimental Psychology.130(4),641-657.
    Ben-Zeev, T. (1995). The nature and origin of rational errors in the arithmetic thinking: induction from examples and knowledge. Cognitive Science, 19, 341- 376.
    Ben-Zeev, T, & Ronald, J. (in press). Is procedure acquisition as unstable as it seems? Contemporary Educational Psychology.
    Bekkering H. & Neggers W. F.(2002)Visual Search is modulated by action intentions. Psychological Science13(4),370-374
    Blando, J. A., Kelly, A. E., Schneider, B. R. & Sleeman, D. (1989). Analyzing and modeling arithmetic errors. Journal for Research in Mathematics Education, 20(3), 301-308.
    Brown, J. S., & Burton, R. R. (1978). Diagnostic models for procedural bugs in basic mathematical skills. Cognitive Science, 2, 155-192.
    Brown J. S. & VanLehn K.(1980)Repair theory:A Generative Theory of bugs in procedural Skills. Cognitive Science 4.379-426
    Brumfield, R. D. & Moore, B. D. (1985). Problems with the basic facts may not be the problem. The Arithmetic Teacher, 33(3), 17-18.
    Burton, R. R. (1982). Diagnosing bugs in a simple procedural skill. In Sleeman, D. & Brown, J. S. (Eds.) Intelligent Tutoring Systems. 157-183.New York: Academic.
    Byrne, M. D. & Bovair, S. (1997). A working memory model of a common procedural error. Cognitive Science, 21(1), 31-61.
    Cumming J. J. & Elkins J.(1994)Are Any Errors Careless? Focus on Learning Problems in Mathematics.16(4),21-30.
    Davis B. R.(1984)Learning Mathematics. The Cogntive Science Approach to Mathematics Education. Publisher: Norwood, N.J.
    Della Sala, S., Gray, C., Baddeley, A., Allamano, N., & Wilson, L. (1999) Pattern span: A tool for unwelding visuo-spatial memory. Neuropsychologia, 37, 1189 – 1199. ISSN 0028 – 3932.
    Duff, S. C. & Logie, R. H.(1999).Storage and processing in visuo-spatial working memory. Scandinavian Journal of Psychology, 40, 251-259.
    Engelhardt , J .M .(1977) Analysis of children’s computational errors: A qualitative approach. British Journal of Educational Psychology, 47,149,154.
    Gilhooly, H. J., Wynn, G., Phillipsm L. H., & Sala, S. D. (2002)Visuo-spatial and verbal working memory in the five-disc Tower of London task:An individual differences approach. Thinking and Reasoning, 8(3),165-178.
    Jansen R. A. (2002)Restricted Focus Viewer(RFV)Version 2.1 User’s Manual and Tutorial. Retrieved October 8, 2003, from http://www.csse.monash.edu.au/~tonyj/RFV/Version2.1/
    Jansen R. A., Blackwell F. A., Marriott K.(2003)A tool for tracking visual attention:The Restricted Focus Viewer.Behavior Research Methods. Instruments. & Computers.35(1),57-69.
    Movshovitz-Hadar, N., Zaslavsky, O., & Inbar, S. (1987). An empirical classification model for errors in high school mathematics. Journal for Research in Mathematics Education, 18, 3-15.
    Nelson Cowan(2000)The magical number 4 in short-term memory: A reconsideration of mental storage capacity. Behavioral and Brain Sciences.24, 87–185.
    Radatz, H. (1979). Error analysis in mathematics education. Journal for Research in Mathematics Education, 10, 163-172.
    Radatz, H. (1980). Students’ errors in the mathematical learning process : a survey. For the Learning of Mathematics, 1(1). 16-20.
    Roberts, G. H. (1968). The failure strategies of third grade arithmetic pupils. The Arithmetic Teacher, 15, 442-446.
    Rochon, E., Waters, G. S., Caplan, D.(2000)The relationship between measures of working memory and sentence comprehension in patients with Alzheimer’s disease. Journal of Speech, Language, and Hearing Research, 43, 395-413.
    Young, R. & O’Shea, T. (1981). Errors in children’s subtraction. Cognitive Science, 5,  153-177.
    Waters, G. S. & Caplan, D.(2003). The reliability and stability of verbal working memory measures. Behavior Research Methods, Instrument, & Computers, 35(4), 550-564.

    QR CODE