簡易檢索 / 詳目顯示

研究生: 沈坤葦
K.-W. Shen
論文名稱: 軟性電子元件與矽鍺碳奈米結構製作及電性分析
The Analysis and Process of the Flexible TFTs and Nano-Silicon,Germanium,and Carbon Structures.
指導教授: 李敏鴻
Lee, Min-Hung
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 96
中文關鍵詞: 缺陷態密度彎曲軟性電子元件穩定度
英文關鍵詞: DOS, strain, Flexible Display, reliability
論文種類: 學術論文
相關次數: 點閱:134下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 顯示器隨著人們使用上的需要,輕巧便利及耐用可靠性,已經成為產品所追求的主流價值,所以可彎曲式軟性顯示器,將是企業下一世代所開發的重點。目前可彎曲式軟性顯示器,都以a-Si:H材料為主,但是外部彎曲下,卻會改變其材料本身的缺陷態(DOS),支配著TFT的特性。
    本論文第二章節,就針對軟性顯示器在不同彎曲的程度下,對其所改變的DOS,來進行研究與討論。我們準備了由工研院所提供的 a-Si:H 與 μc-Si:H 兩種材料的TFT,藉由不同曲率下的模型,進行tensile與compressive的彎曲實驗,並計算出不同曲率下的DOS,以便觀察材料改變了哪些物理特性?了解為何在彎曲下,TFT的電性會受其影響的原因。
    第三章節,我們使用了一些具有低電阻率又加上strain效果的
    Ni/stGe,作Schottky Contact的研究,並比較Laser Annealing及RTA
    哪種是較佳的回火機制。同時在此章節內,我們也討論一些具有前瞻性的材料,在半導體接面上的應用。例如,Si:C/Si結合成n+/p和p+/n 接面,或是Ni/Si:C應用在Schottky Contact等研究,以便可真正應用在未來先進製程,改善當前元件效能上所面臨的問題。

    The display on the need for people to use, lightweight facilitate the reliability and durability, has become the mainstream products by the pursuit of value, can be soft-bending displays, next generation enterprises will be developed by the focus. Currently flexible displays, to a-Si:H based materials, but tensil strain, but will change its own material DOS, dominate the TFT characteristics.
    The second chapter, the DOS of the flexible display for different degree of bending, we study and discuss the results.
    We are prepared by the ITRI provided by the a-Si:H and μc-Si:H TFTs, by the curvature of the different models, tensile and compressive bending experiments, and calculate the curvature of the different DOS, in order to observe the material change what physical characteristics, to understand why the bending under, TFTs, will be affected by sexual reasons.
    The third chapter, we use a number of low-resistivity Strain added effect of Ni/stGe, Schottky contact for the study and compared Laser annealing and RTA which is a better mechanism for annealing.
    At the same time in this chapter, we also discussed a number of advanced materials, in the semiconductor junction to the application.
    For example,Si:C/Si combined n+/p and p+/ n junction, or Ni/Si:C used in Schottky contact, and so on, in order to be truly applied in the future advanced manufacturing process, improve the effectiveness of the current components on the face Problems.

    Publication……………………………………………………………………II 誌謝………………………………………………………………………………V 中文摘要…………………………………………………………………………VI 英文摘要…………………………………………………………………………VII 目錄………………………………………………………………………………IX 第1章 緒論…………………………………………………………………………1 1.1 90nm後CMOS製程變革—應變矽技術……………………………………1 1.2 軟性顯示器之開發與進展—歷史演進 …………………………………4 第2章 軟性元件……………………………………………………………………7 前言………………………………………………………………………………7 基板特性…………………………………………………………………………7 a-Si:H TFT……………………………………………………………………9 μc-Si:H Active Layer……………………………………………………10 實驗……………………………………………………………………………14 電流-電壓特性 ………………………………………………………………14 DOS 物理意義 …………………………………………………………………24 a-Si:H 的DOS分佈……………………………………………………………26 μc-Si:H 的DOS分佈…………………………………………………………27 μc-Si:H TFT模擬……………………………………………………………30 第3章 矽鍺碳奈米結構製作與電性分析………………………………………37 3.1 矽碳合金pn接面研究……………………………………………………37 前言……………………………………………………………………………37 實驗……………………………………………………………………………37 電流-電壓特性…………………………………………………………………38 矽碳合金接面理想性……………………………………………………………40 不同碳濃度對光源反應…………………………………………………………41 3.2 矽碳合金應用於MOSFET之Source/drain研究………………………45 st-Si和碳的結合………………………………………………………………45 3.3 矽鍺碳奈米結構之Schottky接面研究…………………………………48 前言……………………………………………………………………………48 實驗……………………………………………………………………………52 電流-電壓特性………………………………………………………………52 Schottky 接面能障…………………………………………………………55 CV量測法……………………………………………………………………55 1/C2 對V作圖…………………………………………………………………56 CV 量測之頻率與少數載子效應………………………………………………59 IV 變溫量測法…………………………………………………………………61 ln(Js/T2)對T作圖……………………………………………………………62 Dit 物理意義…………………………………………………………………63 Dit 計算方式…………………………………………………………………67 Dit 結果………………………………………………………………………72 第4章 結論…………………………………………………………………………79 Further Work ………………………………………………………………80

    Chapter 1:
    [1]Agape, Secret of 'strained silicon' chips revealed, NewScientist or科學文化頻道.
    [2]李敏鴻,軟性顯示器之開發與進展,奈米通訊,14卷1期,pp.35–41,2007.
    [3]M.H. Lee,K.-Y. Ho,P.-C.Chena C.-C. Cheng,S.T. Chang,
    M. Tang,M.H. Liao ,and Y.-H. Yeh,”Promising a-Si:H TFTs with High Mechanical Reliability for Flexible Display ”, IEDM Digest of Technical Digest,pp.299-302.
    Chapter 2:
    [1]M.H. Lee,K.-Y. Ho,P.-C. Chena C.-C. Cheng,S.T. Chang,M. Tang,M.H. Liao,and Y.-H. Yeh,”Promising a-Si:H TFTs with High Mechanical Reliability for Flexible Display ”,IEDM Digest of Technical Digest, pp. 299-302,2006.
    [2] Y. Kuo,“The Film Transistors – Material and Processes ”,vol. 1, chapter 3,Texas A&M University,U.S.A. 2004.
    [3]M.J. Powell,”The Physics of Amorphous-Silicon Thin-Film Transistors" ,IEEE Transactions on Electron Device, Vol. 36,No. 12,pp. 2753-2762,1989.
    [4]G. Fortunato,D. B. Meakin,P. Migliorato, and P. G. Le Comber, ”Field-Effect Analysis for The Determination of Gap-State Density and Fermi-Level Temperature Dependence in Polycrystalline Silicon”,Philosophical Magazine B,
    Vol. 57, No.5, pp. 573-586,1988.
    [5]J. G. Shaw,M. Hack, ”An Analytic Model for Calculating Trapped Charge in Amorphous Silicon“,Journal of Applied Physics, 64(9),No. 1,pp.4562-4566,1988.
    [6]T. Suzuki, Y. Osaka, and M. Hirose, ”Theoretical Interpretations of The Gap State Density Determined from The Field Effect and Capacitance Voltage Characteristics of Amorphous Semiconductors”,Japanese Journal of Applied Physics,Vol.21,No.3,pp.L159-L161,1982.
    [7]G. Fortunato, P. Migliorato,”Determination of Gap States Density in Polycrystalline Silicon by Field-Effect Conductance ”,Applied Physics Letters,49(16),No.20,pp. 1025-1027,1986.
    [8]H. Hirose,T. Suzuki,and G. H. Döhler,”Electronic Density of States in Discharge-Produced Amorphous Silicon", Applied Physics Letters,Vol.34,No.3,pp.234-236,1979.
    [9]G. Fortunato,D. B. Meakin and P. Migliorato, ”The Sub-Threshold Characteristics of Polysilicon Thin-Film-Transistors",Japanese Journal of Applied Physics ,Vol.
    27.No.11,pp.2124-2127,1988.
    [10]V. Foglietti,L. Mariucci, and G. Fortunato,
    ”Temperature Dependence of The Transfer Characteristics of Polysilicon Thin Film Transistors Fabricated by Excimer Laser Crystalline”, Journal of Applied Physics, Vol. 85,No.1,pp.616-618,1999.
    Chapter 3:
    [1]M.H. Lee,P. S. Chen, W.-C. Hua , and C.-Y. Yu, ” Comprehensive Low-Frequency and RF Noise Characteristics in Strained-Si NMOSFETs ”,in IEEE IEDM Tech. Dig.,PP.69-72, 2003.
    [2]T. Ernst, J.-M. Hartmann,V. Loup, and F. Ducroquet ,” Fabrication of A Novel Strain SiGe:C-Channel Planar 55nm nMosFET for High-Performance CMOS,”VLSI Tech. Dig. ,PP. 92-93,2002.
    [3]Z. Ye,Y. Kim,and A. Zojaji , ”A Study of Low Energy Phosphorus Implantation and Annealing in Si:C Epitaxial Films,”Semicond. Sci. Technol.,Vol. 22 ,PP.171-174,2007.
    [4]M. H. Lee, S. T. Chang, S. W. Lee, P. S. Chen, K.-W. Shen,and W.-C. Wang,"Strained-Si with Carbon Incorporation for MOSFET Source/Drain Engineering ",Fifth International Symposium on Control of Semiconductor Interfaces (ISCSI-V), pp. 107-108, Hachioji, Tokyo, Japan, Nov. 12-14, 2007.
    [5] S.M. SZE,“ Semiconductor Devices Physics and Technology“,Murray Hill,New Jersey, 1985.
    [6]M. H. Lee,S. T. Chang,S. Maikap,K.-W. Shen,and W.-C. Wang,“ Short Channel Effect Improved Strained-Si:C-Source/Drain PMOSFETs, ”Fifth International
    Symposium on Control of Semiconductor Interfaces (ISCSI-V), pp. 203-204,Hachioji,Tokyo,Japan,Nov. 12-14, 2007.
    [7]R.T.-P. Lee ,” Route to Low Parasitic Resistance in MuGFETs with Silicon-Carbon Source/Drain: Integration of Novel Low Barrier Ni(M)Si:C Metal Silicides and Pulsed Laser Annealing" ,IEDM Digest of Technical Digest,pp.685-688, 2007.
    [8]S. Zaima, O. Nakatsuka, H. Kondo1, M. Sakashita, A. Sakai,and M. Ogawa, ”NiSilicide and Germanide Technology for Contacts and Metal Gates in MOSFET
    Applications ”, 8th Solid-State and Integrated Circuit Technology(ICSICT),2006.
    [9]K. Ikeda,Y. Yamashita, and N. Sugiyama, ” Modulation of NiGe/Ge Schottky Barrier Height by Sulfur Segregation during Ni-Germanidation ",Applied Physics Letters,Vol.88, 152115,2006.
    [10]S. Zhu,A. Nakajima,Y. Yokoyama, and Kensaku ,”Temperature Dependence of Ni-Germanide Formed by Ni-Ge Solid-State Reaction”,5th International Workshop on Junction Technology,pp. 85-88, 2005.

    無法下載圖示 本全文未授權公開
    QR CODE