簡易檢索 / 詳目顯示

研究生: 賴薇
Lai, Wei
論文名稱: 以類別感知之多任務學習框架增進序列推薦效果
A Category-aware Multi-task Learning Framework for Improving Sequential Recommendation
指導教授: 柯佳伶
Koh, Jia-Ling
口試委員: 陳良弼
Chen, Liang-Bi
吳宜鴻
Wu, Yi-Hung
范耀中
Fan, Yao-Chung
柯佳伶
Koh, Jia-Ling
口試日期: 2021/08/17
學位類別: 碩士
Master
系所名稱: 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 73
中文關鍵詞: 推薦系統序列預測多任務學習框架
英文關鍵詞: Recommendation System, Sequential Prediction, Multi-task Leaning Framework
DOI URL: http://doi.org/10.6345/NTNU202101166
論文種類: 學術論文
相關次數: 點閱:118下載:20
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 序列推薦系統的目的是根據使用者以往與項目互動的序列資訊,預測使用者可能感興趣的下個互動項目主動進行推薦。本論文提出可套用於 GRU/bi- GRU/Caser 類神經網路模型的類別感知之多任務學習框架,利用項目的類別特徵做為項目的上層資訊,輔助模型預測使用者未互動過的下個項目預測任務。此框架以同時學習預測下個互動類別及下個互動項目為目標,在項目模組中將項目互 動序列經過類神經網路學習到項目層級行為表示法,再融合類別模組所學習到的類別層級行為表示法預測使用者下個互動項目。本論文所提出的方法,分別在 Foursquare 及 MovieLens 兩種不同序列強度的資料集上進行實驗,預測命中率的評估結果顯示:本論文提出的類別感知多任務學習框架在預測使用者下個未互動過的項目,相較只以單任務類神經網路模型的效能,在 Foursquare 資料集 Hit@10 最高可提升10.73%;MovieLens 資料集 Hit@10最高可提升7.29%。

    The goal of sequential recommendation system is to learn patterns by constructing a model from user-item historical interaction records to predict the next item that user will be interested. In this thesis, a multi-task learning framework was proposed, is applicable on GRU/bi-GRU/Caser neural network model to learn category/item prediction tasks simultaneously. The main idea of the framework is to apply the category feature of item sequence, i.e., the high-level concept of item, for improving the prediction of next item that user has not interacted with. The item-level behavior representation learned in the item module of the framework is fused with the category- level behavior representation learned in the category module to predict the next item. The experiments performed on two datasets, which contain data sequences with different levels of sequential intensity, demonstrated that the proposed category-aware multi-task learning framework could get better performance than the single-task learning neural network model. Our approach achieves 10.73% improvement than the baseline model on the Foursquare dataset and 7.29% improvement on the MovieLens dataset as well.

    第一章 緒論 1 1.1 研究動機與目的 1 1.2 研究的範圍與限制 4 1.3 論文方法 5 1.4 論文架構 7 第二章 文獻探討 8 2.1 序列推薦系統 8 2.1.1 非採用深度學習模型之序列推薦系統 8 2.1.2 基於深度學習模型的序列推薦系統 9 2.2 多任務學習框架的序列推薦系統 14 第三章 問題定義與系統架構 17 3.1 問題定義 17 3.2 系統架構與處理流程 19 3.2.1 離線訓練處理 19 3.2.2 線上預測處理 21 第四章 資料前處理 22 4.1 資料格式 22 4.2 資料前處理 24 第五章 類別感知多任務學習框架 27 5.1 類別感知多任務學習框架基本概念 27 5.1.1 框架介紹 27 5.1.2 損失函數設計與訓練策略 31 5.2 類別/項目序列學習網路 33 第六章 實驗結果及探討 41 6.1 資料集說明 41 6.1.1 序列強度分析 42 6.1.2 序列特性分析 45 6.1.3 資料集項目與類別分析 47 6.2 評估指標 48 6.3 模型推薦項目預測命中率評估 49 第七章 結論與未來研究方向 69 參考文獻 70

    [1] Yap GE, Li XL, and Philip SY. 2012. Effective next-items recommendation via personalized sequential pattern mining. In International conference on database systems for advanced applications, Springer, pp. 48–64.
    [2] Rendle S, Freudenthaler C, and Schmidt-Thieme L. 2010. Factorizing personalized markov chains for next-basket recommendation. In Proceedings of the 19th international conference on World wide Web, ACM, pp. 811–820.
    [3] Garcin FF, Dimitrakakis C, and Faltings B. 2013. Personalized news recommendation with context trees. In 7Th ACM recommender systems conference.
    [4] Balázs Hidasi, Massimo Quadrana, Alexandros Karatzoglou, and Domonkos Tikk. 2016. Parallel recurrent neural network architectures for feature-rich session-based recommendations. In RecSys, pp. 241–248.
    [5] Qiang Liu, Shu Wu, and Liang Wang. 2017. Multi-behavioral sequential prediction with recurrent log-bilinear model. In TKDE 29, 6, pp. 1254–1267.
    [6] Trinh Xuan Tuan and Tu Minh Phuong. 2017. 3D convolutional networks for session-based recommendation with content features. In RecSys, pp. 138–146.
    [7] Zhi Li, Hongke Zhao, Qi Liu, Zhenya Huang, Tao Mei, and Enhong Chen. 2018. Learning from history and present: next-item recommendation via discriminatively exploiting user behaviors. In KDD, pp.1734–1743.
    [8] Wang-Cheng Kang and Julian McAuley. 2018. Self-attentive sequential recommendation. In ICDM. IEEE, pp. 197–206.
    [9] Jiaxi Tang and Ke Wang. 2018. Personalized top-n sequential recommendation via convolutional sequence embedding. In WSDM, pp. 565–573.
    [10] Fajie Yuan, Alexandros Karatzoglou, Ioannis Arapakis, Joemon M Jose, and Xiangnan He. 2019. A simple convolutional generative network for next item recommendation. In WSDM, pp. 582–590.
    [11] Shuai Zhang, Yi Tay, Lina Yao, Aixin Sun, and Jake An. 2019. Next item recommendation with self-attentive metric learning. In AAAI, Vol. 9.
    [12] Fajie Yuan, Xiangnan He, Haochuan Jiang, Guibing Guo, Jian Xiong, Zhezhao Xu, and Yilin Xiong. 2020. Future Data Helps Training: Modeling Future Contexts for Session-based Recommendation. In WWW, pp. 303–313.
    [13] Wang, D., Xu, D., Yu, D., and Xu, G. 2021. Time-aware sequence model for next-item recommendation. Appl Intell 51, pp. 906-920.
    [14] Balazs Hidasi, Alexandros Karatzoglou, and et al. Session-based recommendations with recurrent neural networks. 2016. In Proceedings of the 4th International Conference on Learning Representations, pp. 1–10.
    [15] Wang-Cheng Kang, Mengting Wan, and Julian McAuley. 2018. Recommendation through mixtures of heterogeneous item relationships. In Proceedings of the 27th ACM International Conference on Information and Knowledge Management, pp. 1143–1152.
    [16] Steffen Rendle, Christoph Freudenthaler, and Lars Schmidt-Thieme. 2010. Factorizing personalized markov chains for next-basket recommendation. In WWW, pp. 811–820.
    [17] Jarana Manotumruksa, Craig Macdonald, and Iadh Ounis. 2017. A Deep Recurrent Collaborative Filtering Framework for Venue Recommendation. In CIKM, pp.1429–1438.
    [18] Kyunghyun Cho, Bart van Merrienboer, and Dzmitry Bahdanau. 2014. On the Properties of Neural Machine Translation: Encoder-Decoder Approaches. In Proceedings of SSST-8, Eighth Workshop on Syntax, Semantics and Structure in Statistical Translation, pp. 103–111.
    [19] Caruana, R. 1993. Multitask learning: A knowledge-based source of inductive bias. In Proceedings of the Tenth International Conference on Machine Learning. In Proceedings of the Tenth International Conference on Machine Learning.
    [20] L. Zhang, Z. Sun, J. Zhang, Y. Lei, C. Li, Z. Wu, H. Kloeden, and F. Klanner. 2020. An interactive multi-task learning framework for next poi recommendation with uncertain check-ins. In CAL 301 (985) 13954.
    [21] D. Yang, D. Zhang, V. W. Zheng and Z. Yu. 2015. Modeling User Activity Preference by Leveraging User Spatial Temporal Characteristics in LBSNs. In IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 45, no. 1, pp. 129-142.
    [22] F. Maxwell Harper, and Joseph A. Konstan. 2016. The MovieLens Datasets: History and Context. In ACM, vol 5, no.19, pp. 1-19.

    下載圖示
    QR CODE