研究生: |
林士迪 Lin, Shi-Di |
---|---|
論文名稱: |
冷療加壓處理對離心運動引起肌肉及本體感覺損傷之恢復效果的影響 Effects of cryocompression therapy on the recovery of eccentric exercise-induced muscle damage and impaired proprioception |
指導教授: |
陳忠慶
Chen, Chung-Ching 王宏豪 Wang, Hung-Hao |
口試委員: |
陳忠慶
Chen, Chung-Ching 王宏豪 Wang, Hung-Hao 曾暐晉 Tseng, Wei-Chin |
口試日期: | 2024/07/16 |
學位類別: |
碩士 Master |
系所名稱: |
體育與運動科學系 Department of Physical Education and Sport Sciences |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 中文 |
論文頁數: | 65 |
中文關鍵詞: | 力量覺 、位置覺 、肢體腫脹 、運動後恢復 、運動表現 |
英文關鍵詞: | force sense, position sense, limb swelling, recovery after exercise, exercise performance |
研究方法: | 實驗設計法 |
DOI URL: | http://doi.org/10.6345/NTNU202401179 |
論文種類: | 學術論文 |
相關次數: | 點閱:122 下載:2 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
背景:離心運動除了會造成肌肉損傷 (eccentric exercise-induced muscle damage, EIMD)之外,也會進一步影響運動表現及本體感覺。為了能讓訓練效果和比賽成績達到最大化,有效的疲勞恢復策略宜被引入作為提升選手疲勞恢復的方式。常見運動恢復方式計有冷凍療法、加壓療法等,而結合了上述兩種不同恢復方式而成的冷療加壓為一項新技術。它雖然近年來才開始被運用在運動後恢復的領域,但冷療加壓處理對運動後恢復效果的影響爲何,目前研究還不清楚。目的:探究三種不同(冷療組、常溫水加壓與冷療加壓)處理對離心運動引起肌肉及本體感覺損傷之恢復效果的比較。方法:招募40名一般年輕健康男子(18-35歲)爲對象,並以隨機方式分配成對照組、冷療組、常溫水加壓組與冷療加壓組 (n=10人/組),所有研究對象使用非慣用腿膝伸肌群,進行30組 x 10次最大等速(30o/s)離心收縮運動誘發肌肉損傷(如:肌力、關節活動範圍、腿圍),並於離心運動前、後第24、48、72、96、120小時,各進行肌肉損傷、本體感覺以及體能測驗。對照組、冷療組、常溫水加壓組與冷療加壓組於運動後第1、25、49、73、97小時,各分別進行20分鐘之被動休息、冷療、常溫水加壓與冷療加壓之處理。以二因子混合設計變異數分析針對組別與時間因子進行考驗。結果:所有依變項在離心運動後均明顯比前測產生變化。在離心運動後第 1 ~ 5 天,冷療組與冷療加壓組之大腿腿圍變化均顯著小於對照組 (p<.05)。在離心運動後第 4、5 天,常溫水加壓組之大腿腿圍變化均顯著小於對照組 (p<.05);在離心運動後第1天,冷療組、常溫水加壓組之肌肉酸痛程度均顯著小於對照組 (p<.05)。在離心運動後第 1 ~ 4 天,冷療加壓組之肌肉酸痛程度均顯著小於對照組 (p<.05);在離心運動後第 5 天,冷療組、冷療加壓組之均方根電訊號均顯著大於對照組 (p<.05);其餘測試結果,各組之間無顯著差異 (p>.05)。結論:冷療與冷療加壓有利於離心運動引起肌肉損傷後的肢體腫脹和肌肉酸痛消除,常溫水加壓能消除腫脹和肌肉酸痛、改善關節活動範圍。
Background: Eccentric exercise not only causes muscle damage (eccentric exercise-induced muscle damage, EIMD) but also further affects athletic performance and proprioception. To maximize training effects and competition results, effective fatigue recovery strategies should be implemented to enhance athletes' recovery. Common sports recovery methods include cryotherapy and compression therapy. A new technique combining these two different recovery methods, known as cryocompression, has recently been applied in the field of post-exercise recovery. However, the effects of cryocompression on post-exercise recovery are still unclear. Purpose:This study aims to compare the recovery effects of three different treatments (cryotherapy, room temperature water compression, and cryocompression) on muscle and proprioception damage induced by eccentric exercise. Methods: Forty healthy young men (aged 18-35 years) were recruited and randomly assigned to control, cryotherapy, room temperature water compression therapy and cryocompression group (n=10/group). All subjects performed 30 sets of 10 maximal isokinetic (30°/s) eccentric contractions of the knee extensors of their non-dominant leg to induce muscle damage (e.g., muscle strength, joint range of motion, leg circumference). Muscle damage, proprioception, and physical fitness tests were taken before, at 24, 48, 72, 96 and 120 hours post exercise. The control group, cryotherapy group, room temperature water compression therapy group, and cryocompression group underwent corresponding experimental treatments for 20 minutes at 1, 25, 49, 73 and 97 hours post-exercise. A two-way mixed-design ANOVA was used to analyze the effects of group and time factors. Results: All dependent variables significantly changed after eccentric exercise compared to pre-test measures. On days 1 to 5 after eccentric exercise, the changes in thigh circumference in the cryotherapy and cryocompression groups were significantly smaller than those in the control group (p < .05). On days 4 and 5, the changes in thigh circumference in the room temperature water compression group were significantly smaller than those in the control group (p < .05). On day 1, muscle soreness in the cryotherapy and room temperature water compression groups was significantly less than that in the control group (p < 0.05). On days 1 to 4, muscle soreness in the cryocompression group was significantly less than that in the control group (p < .05). On day 5, the root mean square electromyographic signals in the cryotherapy and cryocompression groups were significantly higher than those in the control group (p < .05). No significant differences were observed between the groups for the other test results (p > .05). Conclusion: Cryotherapy and cryocompression are beneficial for reducing limb swelling and muscle soreness after eccentric exercise-induced muscle damage. Room temperature water compression can reduce swelling and muscle soreness and improve joint range of motion.
曾暐晉、曾國維、陳信良、陳忠慶。 (2016)。 低強度離心運動對重複訓練效應及表層肌電訊號活性之影響。 物理治療, 41(3), 189-198.
Aagaard, P., Simonsen, E. B., Andersen, J. L., Magnusson, P., & Dyhre-Poulsen, P. (2002). Increased rate of force development and neural drive of human skeletal muscle following resistance training. Journal of Applied Physiology, 93(4), 1318-1326.
Alexander, J., Jeffery, J., & Rhodes, D. (2021). Recovery profiles of eccentric hamstring strength in response to cooling and compression. Journal of Bodywork and Movement Therapies, 27, 9-15.
Alexander, J., Keegan, J., Reedy, A., & Rhodes, D. (2022). Effects of contemporary cryo-compression on post-training performance in elite academy footballers.Biology of Sport, 39(1), 11-17.
Aljohani, M., Abdel-azeim, A. A., Alshehri, Y. S., Aboonq, M. S., Aljohani, R. K., & Khaled, O. A. (2024). Cryotherapy effects on knee proprioception and quadriceps performance in healthy college students. Isokinetics and Exercise Science, (Preprint), 1-8.
Bailey, D. M., Erith, S. J., Griffin, P. J., Dowson, A., Brewer, D. S., Gant, N., & Williams, C. (2007). Influence of cold-water immersion on indices of muscle damage following prolonged intermittent shuttle running. Journal of Sports Sciences, 25(11), 1163-1170.
Banfi, G., Lombardi, G., Colombini, A., & Melegati, G. (2010). Whole-body cryotherapy in athletes. Sports Medicine, 40(6), 509-517.
Bleakley, C. M., Bieuzen, F., Davison, G. W., & Costello, J. T. (2014). Whole-body cryotherapy: empirical evidence and theoretical perspectives. Open Access Journal of Sports Medicine, 25-36.
Bleakley, C., McDonough, S., & MacAuley, D. (2004). The use of ice in the treatment of acute soft-tissue injury: a systematic review of randomized controlled trials. American Journal of Sports Medicine, 32(1), 251-261.
Bleakley, C., McDonough, S., Gardner, E., Baxter, G. D., Hopkins, J. T., & Davison, G. W. (2012). Cold‐water immersion (cryotherapy) for preventing and treating muscle soreness after exercise. Cochrane Database of Systematic Reviews, (2).
Blumkaitis, J. C., Moon, J. M., Ratliff, K. M., Stecker, R. A., Richmond, S. R., Sunderland, K. L., ... & Mumford, P. W. (2022). Effects of an external pneumatic compression device vs static compression garment on peripheral circulation and markers of sports performance and recovery. European Journal of Applied Physiology, 122(7), 1709-1722.
Chan, Y.Y., Yim, Y.M., Bercades, D., Cheng, T. T., Ngo, K.L., & Lo, K.K. (2016). Comparison of different cryotherapy recovery methods in elite junior cyclists. Asia-Pacific Journal of Sports Medicine, Arthroscopy, Rehabilitation and Technology, 5, 17-23.
Chen, A., Frangos, S., Kilaru, S., & Sumpio, B. (2001). Intermittent pneumatic compression devices–physiological mechanisms of action. European Journal of Vascular and Endovascular Surgery, 21(5), 383-392.
Chen, T. C. (2003). Effects of a second bout of maximal eccentric exercise on muscle damage and electromyographic activity. European Journal of Applied Physiology, 89, 115-121.
Chen, T. C., Chen, H. L., Liu, Y. C., & Nosaka, K. (2014). Eccentric exercise-induced muscle damage of pre-adolescent and adolescent boys in comparison to young men. European journal of applied physiology, 114, 1183-1195.
Chen, T. C., Huang, G.-L., Hsieh, C.C., Tseng, K.W., Tseng, W.C., Chou, T.Y., & Nosaka, K. (2020). Comparison among three different intensities of eccentric contractions of the elbow flexors resulting in the same strength loss at one day post-exercise for changes in indirect muscle damage markers. European Journal of Applied Physiology, 120(1), 267-279.
Chen, T. C., Lin, K. Y., Chen, H. L., Lin, M. J., & Nosaka, K. (2011). Comparison in eccentric exercise-induced muscle damage among four limb muscles. European Journal of Applied Physiology, 111, 211-223.
Chen, T. C., Tseng, W. C., Huang, G. L., Chen, H. L., Tseng, K. W., & Nosaka, K. (2013). Low-intensity eccentric contractions attenuate muscle damage induced by subsequent maximal eccentric exercise of the knee extensors in the elderly. European Journal of Applied Physiology, 113, 1005-1015.
Chen, T. C., Yang, T. J., Huang, M. J., Wang, H. S., Tseng, K. W., Chen, H. L., & Nosaka, K. (2019). Damage and the repeated bout effect of arm, leg, and trunk muscles induced by eccentric resistance exercises. Scandinavian Journal of Medicine and Science in Sports, 29(5), 725-735.
Cheung, K., Hume, P. A., & Maxwell, L. (2003). Delayed onset muscle soreness. Sports Medicine, 33(2), 145-164.
Chleboun, G. S., Howell, J. N., Baker, H. L., Ballard, T. N., Graham, J. L., Hallman, H. L., ... & Conatser, R. R. (1995). Intermittent pneumatic compression effect on eccentric exercise-induced swelling, stiffness, and strength loss. Archives of Physical Medicine and Rehabilitation, 76(8), 744-749.
Chou, T.-Y., Nosaka, K., & Chen, T. C. (2021). Muscle damage and performance after single and multiple simulated matches in university elite female soccer players. International Journal of Environmental Research and Public Health, 18(8), 4134.
Clarkson, P. M. (1997). Eccentric exercise and muscle damage. International Journal of Sports Medicine, 18(S 4), S314-S317.
Clarkson, P. M., & Hubal, M. J. (2002). Exercise-induced muscle damage in humans. American Journal of Physical Medicine and Rehabilitation, 81(11), S52-S69.
Clarkson, P. M., Nosaka, K., & Braun, B. (1992). Muscle function after exercise-induced muscle damage and rapid adaptation. Medicine and Science in Sports and Exercise, 24(5), 512-520.
Clifford, T., Bell, O., West, D. J., Howatson, G., & Stevenson, E. J. (2016). The effects of beetroot juice supplementation on indices of muscle damage following eccentric exercise. European Journal of Applied Physiology, 116(2), 353-362.
Collins, N. (2008). Is ice right? Does cryotherapy improve outcome for acute soft tissue injury? Emergency Medicine Journal, 25(2), 65-68.
Craig Jr, A. B., & Dvorak, M. (1966). Thermal regulation during water immersion. Journal of Applied Physiology, 21(5), 1577-1585.
Cranston, A. W., & Driller, M. W. (2022). Investigating the use of an intermittent sequential pneumatic compression arm sleeve for recovery after upper-body exercise. The Journal of Strength & Conditioning Research, 36(6), 1548-1553.
de Freitas, V. H., Ramos, S. P., Bara-Filho, M. G., Freitas, D. G., Coimbra, D. R., Cecchini, R., ... & Nakamura, F. Y. (2019). Effect of cold water immersion performed on successive days on physical performance, muscle damage, and inflammatory, hormonal, and oxidative stress markers in volleyball players. The Journal of Strength & Conditioning Research, 33(2), 502-513.
Deal, D. N., Tipton, J., Rosencrance, E., Curl, W. W., & Smith, T. L. (2002). Ice reduces edema: a study of microvascular permeability in rats. Journal of Bone and Joint Surgery, 84(9), 1573-1578.
Dervin, G. F., Taylor, D. E., & Keene, G. C. (1998). Effects of cold and compression dressings on early postoperative outcomes for the arthroscopic anterior cruciate ligament reconstruction patient. Journal of Orthopaedic and Sports Physical Therapy, 27(6), 403-406.
DJO AIRCAST Cryo / Cuff IC User Manual . manuals.plus. https://manuals.plus/djo/aircast- cryo-cuff-ic-manual
Doan B., Kwon, Y.-H., Newton, R., Shim, J., Popper, E., Rogers, R., Bolt, L., Robertson, M., & Kraemer, W. (2003). Evaluation of a lower-body compression garment. Journal of Sports Sciences, 21(8), 601-610.
DuPont, W. H., Meuris, B. J., Hardesty, V. H., Barnhart, E. C., Tompkins, L. H., Golden, M. J., Usher, C. J., Spence, P. A., Caldwell, L. K., & Post, E. M. (2017). The effects combining cryocompression therapy following an acute bout of resistance exercise on performance and recovery. Journal of Sports Science & Medicine, 16(3), 333-342.
Fu, W., Liu, Y., Zhang, S., Xiong, X., & Wei, S. (2012). Effects of local elastic compression on muscle strength, electromyographic, and mechanomyographic responses in the lower extremity. Journal of Electromyography and Kinesiology, 22(1), 44-50.
Furmanek, M. P., Słomka, K., & Juras, G. (2014). The effects of cryotherapy on proprioception system. BioMed Research International, 2014(1), 696397.
Furmanek, M. P., Słomka, K. J., Sobiesiak, A., Rzepko, M., & Juras, G. (2018). The effects of cryotherapy on knee joint position sense and force production sense in healthy individuals. Journal of Human Kinetics, 61(1), 39-51.
Fyfe, J. J., Broatch, J. R., Trewin, A. J., Hanson, E. D., Argus, C. K., Garnham, A. P., ... & Petersen, A. C. (2019). Cold water immersion attenuates anabolic signaling and skeletal muscle fiber hypertrophy, but not strength gain, following whole-body resistance training. Journal of Applied Physiology, 127(5), 1403-1418.
Ghai, S., Nilson, F., Gustavsson, J., & Ghai, I. (2024). Influence of compression garments on proprioception: A systematic review and meta‐analysis. Annals of the New York Academy of Sciences, 1-22.
Goodall, S., & Howatson, G. (2008). The effects of multiple cold water immersions on indices of muscle damage. Journal of Sports Science & Medicine, 7(2), 235.
Hernández-Preciado, J. A., Baz, E., Balsalobre-Fernández, C., Marchante, D., & Santos-Concejero, J. (2018). Potentiation effects of the French contrast method on vertical jumping ability. The Journal of Strength and Conditioning Research, 32(7), 1909-1914.
Hill, J., Howatson, G., Van Someren, K., Leeder, J., & Pedlar, C. (2014). Compression garments and recovery from exercise-induced muscle damage: a meta-analysis. British Journal of Sports Medicine, 48(18), 1340-1346.
Hirose, L., Nosaka, K., Newton, M., Laveder, A., Kano, M., Peake, J., & Suzuki, K. (2004). Changes in inflammatory mediators following eccentric exercise of the elbow flexors. Exercise Immunology Review, 10(20), 75-90.
Hohenauer, E., Costello, J. T., Deliens, T., Clarys, P., Stoop, R., & Clijsen, R. (2020). Partial‐body cryotherapy (− 135 C) and cold‐water immersion (10 C) after muscle damage in females. Scandinavian Journal of Medicine & Science in Sports, 30(3), 485-495.
Hohenauer, E., Taeymans, J., Baeyens, J.-P., Clarys, P., & Clijsen, R. (2015). The effect of post-exercise cryotherapy on recovery characteristics: a systematic review and meta-analysis. PloS one, 10(9), e0139028.
Høiness, P., Hvaal, K., & Engebretsen, L. (1998). Severe hypothermic injury to the foot and ankle caused by continuous cryocompression therapy. Knee Surgery, Sports Traumatology, Arthroscopy, 6(4), 253-255.
Hong, W. H., Lo, S. F., Wu, H. C., & Chiu, M. C. (2022). Effects of compression garment on muscular efficacy, proprioception, and recovery after exercise-induced muscle fatigue onset for people who exercise regularly. Plos one, 17(2), e0264569.
Hosp, S., Folie, R., Csapo, R., Hasler, M., & Nachbauer, W. (2017). Eccentric exercise, kinesiology tape, and balance in healthy men. Journal of Athletic Training, 52(7), 636-642.
Howatson, G., & Someren, K. A. (2008). The prevention and treatment of exercise-induced muscle damage. Sports Medicine, 38(6), 483-503.
Howatson, G., Gaze, D., & Van Someren, K. (2005). The efficacy of ice massage in the treatment of exercise‐induced muscle damage. Scandinavian Journal of Medicine & Science in Sports, 15(6), 416-422.
Howatson, G., Goodall, S., & Van Someren, K. (2009). The influence of cold water immersions on adaptation following a single bout of damaging exercise. European Journal of Applied Physiology, 105, 615-621.
Hsieh, C.C., Nosaka, K., Chou, T.Y., Hsu, S.T., & Chen, T. C. (2022). Effects of far-infrared radiation-lamp therapy on recovery from simulated soccer match running activities in elite soccer players. International Journal of Sports Physiology and Performance, 17(9), 1432-1438.
Hubbard, T. J., & Denegar, C. R. (2004). Does cryotherapy improve outcomes with soft tissue injury?. Journal of athletic training, 39(3), 278.
Ibegbuna, V., Delis, K. T., Nicolaides, A. N., & Aina, O. (2003). Effect of elastic compression stockings on venous hemodynamics during walking. Journal of Vascular Surgery, 37(2), 420-425.
Johansson, T., Engquist, M., Pettersson, L.-G., & Lisander, B. (2005). Blood loss after total hip replacement: a prospective randomized study between wound compression and drainage. Journal of Arthroplasty, 20(8), 967-971.
Kalli, K., & Fousekis, K. (2020). The effects of cryotherapy on athletes’ muscle strength, flexibility, and neuromuscular control: A systematic review of the literature. Journal of Bodywork and Movement Therapies, 24(2), 175-188.
Knobloch, K., Grasemann, R., Jagodzinski, M., Richter, M., Zeichen, J., & Krettek, C. (2006). Changes of Achilles midportion tendon microcirculation after repetitive simultaneous cryotherapy and compression using a Cryo/Cuff. American Journal of Sports Medicine, 34(12), 1953-1959.
Knobloch, K., Grasemann, R., Spies, M., & Vogt, P. M. (2008). Midportion achilles tendon microcirculation after intermittent combined cryotherapy and compression compared with cryotherapy alone: a randomized trial. American Journal of Sports Medicine, 36(11), 2128-2138.
Kowal, M., Gieysztor, E., Kołcz, A., Pecuch, A., Borowicz, W., Dymarek, R., & Paprocka-Borowicz, M. (2022). The Acute Influence of Whole-Body Cryotherapy on Electromyographic Signals and Jumping Tasks. Applied Sciences, 12(10), 5020.
Kraemer, W. J., Bush, J. A., Triplett-McBride, N. T., Koziris, L. P., Mangino, L. C., Fry, A. C., McBride, J. M., Johnston, J., Volek, J. S., & Young, C. A. (1998). Compression garments: Influence on muscle fatigue. Journal of Strength and Conditioning Research, 12(4), 211-215.
Kraemer, W. J., Flanagan, S. D., Comstock, B. A., Fragala, M. S., Earp, J. E., Dunn-Lewis, C., Ho, J.-Y., Thomas, G. A., Solomon-Hill, G., & Penwell, Z. R. (2010). Effects of a whole body compression garment on markers of recovery after a heavy resistance workout in men and women. Journal of Strength and Conditioning Research, 24(3), 804-814.
Kullenberg, B., Ylipää, S., Söderlund, K., & Resch, S. (2006). Postoperative cryotherapy after total knee arthroplasty: a prospective study of 86 patients. The Journal of Arthroplasty, 21(8), 1175-1179.
Leegwater, N. C., Bloemers, F. W., de Korte, N., Heetveld, M. J., Kalisvaart, K. J., Schönhuth, C. P., Pijnenburg, B. A., Burger, B. J., Ponsen, K. J., & Maier, A. B. (2017). Postoperative continuous-flow cryocompression therapy in the acute recovery phase of hip fracture surgery: A randomized controlled clinical trial. Injury, 48(12), 2754-2761.
Levy, A. S., & Marmar, E. (1993). The role of cold compression dressings in the postoperative treatment of total knee arthroplasty. Clinical Orthopaedics and Related Research(297), 174-178.
Linnamo, V., Bottas, R., Komi. (2000). Force and EMG power spectrum during and after eccentric and concentric fatigue. Journal of Electromyography and Kinesiology, 10(5), 293-300.
Mac Auley, D. C. (2001). Ice therapy: how good is the evidence? International Journal of Sports Medicine, 22(05), 379-384.
Machlenkin, A., Goldberger, O., Tirosh, B., Paz, A., Volovitz, I., Bar-Haim, E., Lee, S.-H., Vadai, E., Tzehoval, E., & Eisenbach, L. (2005). Combined dendritic cell cryotherapy of tumor induces systemic antimetastatic immunity. Clinical Cancer Research, 11(13), 4955-4961.
MacIntyre, D. L., Reid, W. D., & McKenzie, D. C. (1995). Delayed muscle soreness. Sports Medicine, 20(1), 24-40.
Maruyama, T., Mizuno, S., & Goto, K. (2019). Effects of cold water immersion and compression garment use after eccentric exercise on recovery. Journal of Exercise Nutrition & Biochemistry, 23(1), 48.
Meeusen, R., & Lievens, P. (1986). The use of cryotherapy in sports injuries. Sports Medicine, 3(6), 398-414.
Merrick, M. A., Rankin, J. M., Andres, F. A., & Hinman, C. L. (1999). A preliminary examination of cryotherapy and secondary injury in skeletal muscle. Medicine and Science in Sports and Exercise, 31(11), 1516-1521.
Meyer-Marcotty, M., Jungling, O., Vaske, B., Vogt, P. M., & Knobloch, K. (2011). Standardized combined cryotherapy and compression using Cryo/Cuff after wrist arthroscopy. Knee Surgery, Sports Traumatology, Arthroscopy, 19, 314-319.
Mora, S., Zalavras, C. G., Wang, L., & Thordarson, D. B. (2002). The role of pulsatile cold compression in edema resolution following ankle fractures: a randomized clinical trial. Foot and Ankle International, 23(11), 999-1002.
Murgier, J., & Cassard, X. (2014). Cryotherapy with dynamic intermittent compression for analgesia after anterior cruciate ligament reconstruction. Preliminary study. Orthopaedics & Traumatology: Surgery & Research, 100(3), 309-312.
Myers, B. A., Jenkins, W. L., Killian, C., & Rundquist, P. (2014). Normative data for hop tests in high school and collegiate basketball and soccer players. International Journal of Sports Physical Therapy, 9(5), 596-603.
Négyesi, J., Zhang, L. Y., Jin, R. N., Hortobágyi, T., & Nagatomi, R. (2021). A below-knee compression garment reduces fatigue-induced strength loss but not knee joint position sense errors. European Journal of Applied Physiology, 121, 219-229.
Nunes, R. F. H., Duffield, R., Nakamura, F. Y., Bezerra, E. D. S., Sakugawa, R. L., Loturco, I., ... & Guglielmo, L. G. A. (2019). Recovery following Rugby Union matches: effects of cold water immersion on markers of fatigue and damage. Applied Physiology, Nutrition, and Metabolism, 44(5), 546-556.
Paschalis, V., Nikolaidis, M. G., Theodorou, A. A., Deli, C. K., Raso, V., Jamurtas, A. Z., Giakas, G., & Koutedakis, Y. (2013). The effects of eccentric exercise on muscle function and proprioception of individuals being overweight and underweight. Journal of Strength and Conditioning Research, 27(9), 2542-2551.
Paschalis, V., Nikolaidis, M. G., Theodorou, A. A., Giakas, G., Jamurtas, A. Z., & Koutedakis, Y. (2010). Eccentric exercise affects the upper limbs more than the lower limbs in position sense and reaction angle. Journal of Sports Sciences, 28(1), 33-43.
Paulsen, G., Crameri, R., Benestad, H. B., Fjeld, J. G., Mørkrid, L., Hallén, J., & Raastad, T. (2010). Time course of leukocyte accumulation in human muscle after eccentric exercise. Medicine and Science in Sports and Exercise, 42(1), 75-85.
Paulsen, G., Vissing, K., Kalhovde, J. M., Ugelstad, I., Bayer, M. L., Kadi, F., ... & Raastad, T. (2007). Maximal eccentric exercise induces a rapid accumulation of small heat shock proteins on myofibrils and a delayed HSP70 response in humans. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 293(2), R844-R853.
Peñailillo, L., Blazevich, A., Numazawa, H., Nosaka, K. (2015). Rate of force development as a measure of muscle damage. Journal of Medicine and Science in Sports, 25(3), 417-427.
Pritchard, K. A., & Saliba, S. A. (2014). Should athletes return to activity after cryotherapy? Journal of Athletic Training, 49(1), 95-96.
Proske, U., & Gandevia, S. C. (2012). The proprioceptive senses: their roles in signaling body shape, body position and movement, and muscle force. Physiological Reviews. 92(4), 1651-1697.
Proske, U., & Gandevia, S. C. (2016). Proprioception: The sense within. Scientist, 30(9), 37-42.
Proske, U., Weerakkody, N. S., Percival, P., Morgan, D. L., Gregory, J. E., & Canny, B. J. (2003). Force‐matching errors after eccentric exercise attributed to muscle soreness. Clinical and Experimental Pharmacology and Physiology, 30(8), 576-579.
Roberts, L. A., Nosaka, K., Coombes, J. S., & Peake, J. M. (2014). Cold water immersion enhances recovery of submaximal muscle function after resistance exercise. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 307(8), R998-R1008.
Rodríguez‐Rosell, D., Pareja‐Blanco, F., Aagaard, P., González‐Badillo, J. (2018). Physiological and methodological aspects of rate of force development assessment in human skeletal muscle. Clinical Physiology and Functional Imaging, 38(5), 743-762.
Rubley, M. D., Holcomb, W. R., & Guadagnoli, M. A. (2003). Time course of habituation after repeated ice-bath immersion of the ankle. Journal of Sport Rehabilitation, 12(4), 323-332.
Schröder, D., & Pässler, H. (1994). Combination of cold and compression after knee surgery. Knee Surgery, Sports Traumatology, Arthroscopy, 2(3), 158-165.
Scurr, J. H., Smith, P. C., & Machin, S. (2001). Deep vein thrombosis in airline passengers—the incidence of deep vein thrombosis and the efficacy of elastic compression stockings. Cardiovascular Surgery, 9(2), 159-161.
Sheldon, R. D., Roseguini, B. T., Laughlin, M. H., & Newcomer, S. C. (2013). New insights into the physiologic basis for intermittent pneumatic limb compression as a therapeutic strategy for peripheral artery disease. Journal of Vascular Surgery, 58(6), 1688-1696.
Shimokochi, Y., Kuwano, S., Yamaguchi, T., Abutani, H., & Shima, N. (2017). Effects of wearing a compression garment during night sleep on recovery from high-intensity eccentric-concentric quadriceps muscle fatigue. The Journal of Strength & Conditioning Research, 31(10), 2816-2824.
Siqueira, A. F., Vieira, A., Bottaro, M., Ferreira-Júnior, J. B., Nobrega, O. D. T., de Souza, V. C., ... & Durigan, J. L. Q. (2018). Multiple cold-water immersions attenuate muscle damage but not alter systemic inflammation and muscle function recovery: a parallel randomized controlled trial. Scientific Reports, 8(1), 10961.
Smith, L. L. (1991). Acute inflammation: the underlying mechanism in delayed onset muscle soreness?. Medicine and Science in Sports and Exercise, 23(5), 542-551.
Swenson, C., Swärd, L., & Karlsson, J. (1996). Cryotherapy in sports medicine. Scandinavian Journal of Medicine and Science in Sports, 6(4), 193-200.
Torres, R., Vasques, J., Duarte, J., & Cabri, J. (2010). Knee proprioception after exercise-induced muscle damage. International Journal of Sports Medicine, 31(6), 410-415.
Tremblay, F., Estephan, L., Legendre, M., & Sulpher, S. (2001). Influence of local cooling on proprioceptive acuity in the quadriceps muscle. Journal of Athletic Training, 36(2), 119.
Verducci, F. M. (2000). Interval cryotherapy decreases fatigue during repeated weight lifting. Journal of Athletic Training, 35(4), 422.
Waller, T., Caine, M., & Morris, R. (2006). Intermittent pneumatic compression technology for sports recovery. The Engineering of Sport 6: Volume 3: Developments for Innovation , 391-396.
Webb, J. M., Williams, D., Ivory, J. P., Day, S., & Williamson, D. M. (1998). The use of cold compression dressings after total knee replacement: a randomized controlled trial. Orthopedics, 21(1), 59-61.
Wiecha, S., Jarocka, M., Wiśniowski, P., Cieśliński, M., Price, S., Makaruk, B., ... & Sacewicz, T. (2021). The efficacy of intermittent pneumatic compression and negative pressure therapy on muscle function, soreness and serum indices of muscle damage: a randomized controlled trial. BMC Sports Science, Medicine and Rehabilitation, 13, 1-10.
Wiewelhove, T., Raeder, C., Meyer, T., Kellmann, M., Pfeiffer, M., & Ferrauti, A. (2015). Markers for routine assessment of fatigue and recovery in male and female team sport athletes during high-intensity interval training. PloS one, 10(10), e0139801.
Wilson, L. J., Dimitriou, L., Hills, F. A., Gondek, M. B., van Wyk, A., Turek, V., ... & Cockburn, E. (2021). Cold water immersion offers no functional or perceptual benefit compared to a sham intervention during a resistance training program. The Journal of Strength & Conditioning Research, 35(10), 2720-2727.
Yanaoka, T., Numata, U., Nagano, K., Kurosaka, S., & Kawashima, H. (2022). Effects of different intermittent pneumatic compression stimuli on ankle dorsiflexion range of motion. Frontiers in Physiology, 13, 1054806.
Zhou, Y., Li, Y., Wang, R. (2011). Evaluation of exercise-induced muscle damage by surface electromyography. Journal of Electromyography and Kinesiology, 21(2), 356-362.