簡易檢索 / 詳目顯示

研究生: 盧俊宇
Lu, Chun-Yu
論文名稱: 利用密度泛函理論與動態蒙特卡羅法研究Fischer-Tropsch合成反應
Investigation of Mechanism for Fischer-Tropsch Synthesis by Density Functional Theory and Kinetic Monte Carlo Method
指導教授: 王禎翰
Wang, Jeng-Han
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 97
中文關鍵詞: 動態蒙特卡羅密度泛函理論Fischer-Tropsch合成反應反應機構
英文關鍵詞: Kinetic Monte Carlo, density functional theory, Fischer-Tropsch synthesis reaction, Ruthenium, Cobalt, chemical mechanism
論文種類: 學術論文
相關次數: 點閱:115下載:15
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文是探討Fischer-Tropsch合成反應(以下簡稱F-T合成反應)路徑機構,利用密度泛函理論與動態蒙特卡羅模擬實驗上以Ru(0001)和Co(0001)表面作為催化劑的化學機制探討。我們先以密度泛函理論計算所有事件中間產物,從CO和H2反應形成C1(甲烷)和C2(乙烯、乙烷)等產物的吸附最佳位置,以及利用微動彈性帶方法找出各反應事件的活化能。所得吸附能和活化能讓我們適用於動態蒙特卡羅模擬實驗,並且可以揭示反應機制變化以及反應產物的選擇率。由動態蒙特卡羅模擬找出Ru和Co催化反應機構的差異,發現Ru(0001)與Co(0001)表面進行F-T反應在起始活化CO反應皆選擇氫化產生CHO路徑,在Co(0001)表面上我們可以看到CHO中間產物可以進一步氫化產生CH2O或CH3O,或是直接型CO鍵斷裂行成CHx產物群聚於表面,所得CHx具有氫化生成CH4的更好機會。而Ru表面趨向CHO的斷氧反應產生CH中間產物聚集於表面利於碳長鏈加成為C2產物,與Co表面最大的不同便在於此,我們也看到在同溫度的情況下,產率方面以Ru表面較好。因此我們探討了400~520K的溫度對兩表面的產率變化,發現隨著溫度上升,長碳鏈的選擇率也上升,以及針對於Co表面的改良,讓表面能脫離卡在CHO與CH2O的加脫氫反應的產率干擾現象,也得到了更高的長碳鏈產率,從動態蒙特卡羅模擬的結果,我們合理推測:在CHO中間產物的加氫生成CH¬2O以及斷氧產生CH的路徑與F-T反應長碳鏈產物的選擇率關係密切,因此只要在這個步驟上能有效的改良便能使F-T反應的轉換效率提升。

    This thesis is focused on mechanistic study of Fischer-Tropsch(F-T) synthesis reaction on Ru(0001) and Co(0001) surfaces by density functional theory(DFT) and kinetic Monte Carlo (kMC) method. DFT was employed to optimize the local minima and transition states for a series of elementary steps in the formation of C1 (CH4) and C2 (C2H4 and C2H6) products from reactants of CO and H2. The resulted energetics, including adsorption energy and activation barriers, were applied for kMC simulation to reveal the mechanism and product selectivities. The computations found that the first step in F-T is CO hydrogenation in the formation of CHO on both Ru(0001) and Co(0001) surfaces. CHO could further hydrogenated to CH2O or CH3O before the C-O bond breaking forming CHx on Co(0001) surface. The resulted CHx has better chance for hydrogenation to CH4. On the other hand, CHO immediately breaks its C-O bond forming CH on Ru(0001) surface. The intermediates favors C-C coupling reaction and forming C2 products. Thus, hydrogenation or C-O bond dissociation of CHO are the key step to control C1 and C2 product selectivity. In the temperature effect study, both surfaces have more C2 products at higher temperature.

    目錄 謝誌 2 摘要 3 第一章 緒論 11 1-1 催化反應介紹 11 1-2 F-T反應機構發展 13 1-3 研究目的及動機 14 第二章 理論原理與計算 15 理論計算流程: 15 2-1 計算方法:密度泛函理論 ( Density functional theory,DFT) 16 2-2 系統與軟體 20 第三章 KMC理論原理與計算 29 3-1 計算方法:動態蒙特卡羅方法 ( The Kinetic Monte Carlo Method,KMC) 29 3-2 KMC程序 30 3-3 吸附位置安排 30 3-3-1 吸附(Adsorption) 31 3-3-2 脫附(Desorption) 31 3-3-3 組合(Combination) 31 3-3-4 擴散(Diffusion) 32 3-3-5 分離吸附(Dissociative adsorption) 33 3-3-6 結合脫附(Desorption from the dissociative adsorption/combination) 33 3-4 設計反應事件與條件 34 3-5 從DFT理論計算的路徑活化能 34 3-6 Kinetic Monte Carlo simulation流程圖 34 第四章 Fischer-Tropsch合成反應在M(0001)(M = Ru、Co)表面之理論計算研究 36 4-1 計算參數 36 4-2 結果與討論 40 4-2-1 DFT部分 40 4-2-2 KMC部分 46 第五章 結論 92 第六章 未來與展望 94 參考文獻 95

    1. Palmeri, N., et al., Hydrogen from oxygenated solvents by steam reforming on Ni/Al2O3 catalyst. Int. J. Hydrogen Energy, 2008. 33(22): p. 6627-6634.
    2. Rabenstein, G. and V. Hacker, Hydrogen for fuel cells from ethanol by steam-reforming, partial-oxidation and combined auto-thermal reforming: A thermodynamic analysis. Journal of Power Sources, 2008. 185(2): p. 1293-1304.
    3. Liu, X., R.J. Madix, and C.M. Friend, Unraveling molecular transformations on surfaces: a critical comparison of oxidation reactions on coinage metals. Chem. Soc. Rev., 2008. 37: p. 2243-2261.
    4. Min, B.K. and C.M. Friend, Heterogeneous Gold-Based Catalysis for Green Chemistry: Low-Temperature CO Oxidation and Propene Oxidation. Chem. Rev., 2007. 107: p. 2709-2724.
    5. Davis, S.E., M.S. Ide, and R.J. Davis, Selective oxidation of alcohols and aldehydes over supported metal nanoparticles. Green Chem., 2013. 15: p. 17-45.
    6. Rodrigues, C.P., V.T. da Silva, and M. Schmal, Partial oxidation of ethanol on Cu/Alumina/cordierite monolith. Catal. Comm., 2009. 10: p. 1697-1701.
    7. Hung, C.-C., et al., Oxidative steam reforming of ethanol for hydrogen production on M/Al2O3. Int. J. Hydrogen Energy, 2012. 37: p. 4955-66.
    8. Zhang, J., et al., Density Functional Theory Studies of Ethanol Decomposition on Rh(211). J. Phys. Chem. C, 2011. 115: p. 22429-37.
    9. Papageorgopoulos, D.C., Q. Ge, and D.A. King, Synchronous Thermal Desorption and Decomposition of Ethanol on Rh{111}. J. Phys. Chem., 1995. 99: p. 17645-9.
    10. Choi, Y. and P. Liu, Mechanism of Ethanol Synthesis from Syngas on Rh(111). J. Am. Chem. Soc., 2009. 131: p. 13054-61.
    11. Schulz, H., Short history and present trends of Fischer–Tropsch synthesis. Applied Catalysis A: General, 1999. 186(1–2): p. 3-12.
    12. Iglesia, E., Design, synthesis, and use of cobalt-based Fischer-Tropsch synthesis catalysts. Applied Catalysis A: General, 1997. 161(1–2): p. 59-78.
    13. Khodakov, A.Y., W. Chu, and P. Fongarland, Advances in the Development of Novel Cobalt Fischer−Tropsch Catalysts for Synthesis of Long-Chain Hydrocarbons and Clean Fuels. Chemical Reviews, 2007. 107(5): p. 1692-1744.
    14. Davis, B.H., Fischer−Tropsch Synthesis:  Comparison of Performances of Iron and Cobalt Catalysts. Industrial & Engineering Chemistry Research, 2007. 46(26): p. 8938-8945.
    15. de Smit, E. and B.M. Weckhuysen, The renaissance of iron-based Fischer-Tropsch synthesis: on the multifaceted catalyst deactivation behaviour. Chemical Society Reviews, 2008. 37(12): p. 2758-2781.
    16. Borghard, W.G. and C.O. Bennett, Evaluation of Commercial Catalysts for the Fischer-Tropsch Reaction. Industrial & Engineering Chemistry Product Research and Development, 1979. 18(1): p. 18-26.
    17. Rofer-DePoorter, C.K., A comprehensive mechanism for the Fischer-Tropsch synthesis. Chemical Reviews, 1981. 81(5): p. 447-474.
    18. Maitlis, P.M. and V. Zanotti, The role of electrophilic species in the Fischer-Tropsch reaction. Chemical Communications, 2009(13): p. 1619-1634.
    19. Jun Cheng , P.H., Peter Ellis , Sam French , Gordon Kelly , and C. Martin Lok Chain Growth Mechanism in Fischer−Tropsch Synthesis:  A DFT Study of C−C Coupling over Ru, Fe, Rh, and Re Surfaces. J. Phys. Chem. C, 2008. 112(15): p. 6082-6086.
    20. Dry, M.E., Practical and theoretical aspects of the catalytic Fischer-Tropsch process. Applied Catalysis A: General, 1996. 138(2): p. 319-344.
    21. Davis, B.H., Fischer–Tropsch synthesis: current mechanism and futuristic needs. Fuel Processing Technology, 2001. 71(1–3): p. 157-166.
    22. Shetty, S., A.P.J. Jansen, and R.A. van Santen, Direct versus Hydrogen-Assisted CO Dissociation. Journal of the American Chemical Society, 2009. 131(36): p. 12874-12875.
    23. Shetty, S. and R.A. van Santen, CO dissociation on Ru and Co surfaces: The initial step in the Fischer?ropsch synthesis. Catalysis Today, 2011. 171(1): p. 168-173.
    24. Gong, X.-Q., R. Raval, and P. Hu, CO dissociation and O removal on Co: a density functional theory study. Surface Science, 2004. 562(1-3): p. 247-256.
    25. Inderwildi, O.R., S.J. Jenkins, and D.A. King, Fischer−Tropsch Mechanism Revisited:  Alternative Pathways for the Production of Higher Hydrocarbons from Synthesis Gas. The Journal of Physical Chemistry C, 2008. 112(5): p. 1305-1307.
    26. Alfonso, D.R., Further Theoretical Evidence for Hydrogen-Assisted CO Dissociation on Ru(0001). The Journal of Physical Chemistry C, 2013. 117(40): p. 20562-20571.
    27. Inderwildi, O.R., S.J. Jenkins, and D.A. King, Fischer-Tropsch Mechanism Revisited:Alternative Pathways for the Production of Higher Hydrocarbons from Synthesis Gas. The Journal of Physical Chemistry C, 2008. 112(5): p. 1305-1307.
    28. Ojeda, M., et al., CO activation pathways and the mechanism of Fischer-tropsch synthesis. Journal of Catalysis, 2010. 272(2): p. 287-297.
    29. Shetty, S. and R.A. van Santen, Hydrogen induced CO activation on open Ru and Co surfaces. Physical Chemistry Chemical Physics, 2010. 12(24): p. 6330-6332.
    30. Brady, R.C. and R. Pettit, Mechanism of the Fischer-Tropsch reaction. The chain propagation step. Journal of the American Chemical Society, 1981. 103(5): p. 1287-1289.
    31. Hibbitts, D.D., et al., Mechanistic Role of Water on the Rate and Selectivity of Fischer–Tropsch Synthesis on Ruthenium Catalysts. Angewandte Chemie International Edition, 2013. 52(47): p. 12273-12278.
    32. Gong, X.-Q., R. Raval, and P. Hu, CHx hydrogenation on Co(0001): A density functional theory study. The Journal of Chemical Physics, 2005. 122(2): p. 024711.
    33. Fischer, F.T., H. , Brennstoff chem., 1923. 4: p. 276.
    34. Brady, R.C. and R. Pettit, Reactions of diazomethane on transition-metal surfaces and their relationship to the mechanism of the Fischer-Tropsch reaction. Journal of the American Chemical Society, 1980. 102(19): p. 6181-6182.
    35. Pichler, H.S., H., Chem. Eng. Technol., 1970. 12: p. 1160.
    36. Kummer, J.T. and P.H. Emmett, Fischer-Tropsch Synthesis Mechanism Studies. The Addition of Radioactive Alcohols to the Synthesis Gas. Journal of the American Chemical Society, 1953. 75(21): p. 5177-5183.
    37. Kresse, G. and J. Hafner, Ab initio molecular dynamics for liquid metals. Phys. Rev. B, 1993. 47: p. 558-561.
    38. Cleperley, D.M. and B.J. Alder, Phys. Rev. Lett. , 1980. 45: p. 566.
    39. Perdew, J.P. and Y. Yang, Phys. Rev. B, 1992. 45: p. 244.
    40. Kresse, G. and J. Hafner, Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993. 47: p. 558.
    41. Kresse, G. and J. Hafner, Phys. Rev. B, 1994. 49: p. 1425.
    42. Kresse, G. and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996. 54: p. 11169.
    43. Blöchl, P.E., Projector augmented-wave method. Phys. Rev. B, 1994. 50: p. 17953.
    44. Kresse, G. and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B, 1999. 59: p. 1758.
    45. Xie, Y., J. Zhou, and S. Jiang, Parallel tempering Monte Carlo simulations of lysozyme orientation on charged surfaces. The Journal of Chemical Physics, 2010. 132(6): p. 065101.
    46. Metropolis, N., et al., Equation of State Calculations by Fast Computing Machines. The Journal of Chemical Physics, 1953. 21(6): p. 1087-1092.
    47. Kubisz, L., S. Mielcarek, and F. Jaroszyk, Changes in thermal and electrical properties of bone as a result of 1 MGy-dose γ-irradiation. International Journal of Biological Macromolecules, 2003. 33(1–3): p. 89-93.
    48. Marzec, E., Temperature variation of the relaxation time of α-dispersion for gamma-irradiated collagen. International Journal of Biological Macromolecules, 1995. 17(1): p. 3-6.
    49. Charlesby, A., Some Comparisons between Radiation Effects in Polymeric and Biological Macromolecules. Polym J, 1987. 19(5): p. 649-657.
    50. Gibbs, C.J., D.C. Gajdusek, and R. Latarjet, Unusual resistance to ionizing radiation of the viruses of kuru, Creutzfeldt-Jakob disease, and scrapie. Proceedings of the National Academy of Sciences of the United States of America, 1978. 75(12): p. 6268-6270.
    51. Kresse, G. and J. Hafner, Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B, 1994. 49: p. 14251-14269.
    52. Kresse, G. and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B, 1996. 54: p. 11169-11186.
    53. Ceperley, D.M. and B.J. Alder, Ground State of the Electron Gas by a Stochastic Method. Phys. Rev. Lett., 1980. 45: p. 566-569.
    54. Blöchl, P.E., Projector augmented-wave method. Phys. Rev. B, 1994. 50: p. 17953-17979.

    下載圖示
    QR CODE