簡易檢索 / 詳目顯示

研究生: 李冠儀
Le, Guan-Yi
論文名稱: 奈米金-氧化矽多層結構應用於有機氣體光學探針之研製
An Optical Volatile Organic Compounds Probe Using nano-Au/ nano-SiO2 Composite Mulitilayer
指導教授: 呂家榮
Lu, Chia-Jung
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 82
中文關鍵詞: 表面電漿共振揮發性有機氣體二氧化矽多層奈米金粒子光學感測器探針
英文關鍵詞: Silica
DOI URL: https://doi.org/10.6345/NTNU202204186
論文種類: 學術論文
相關次數: 點閱:207下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究發展新型光學探頭式探針感測器,在探針基材上修飾多層奈米金粒子及銀鏡,利用局部表面電漿共振 (Localized Surface Plasmon Resonance;LSPR) 原理測量揮發性有機氣體 (Volatile Organic Compounds;VOCs)。首先以3-氨基丙基三乙氧基矽烷(3-Aminopropyl triethoxysilane;APTMS) 當作玻璃和奈米金粒子的交聯劑,再於玻璃片上自組裝奈米金粒子,最後以四乙氧基矽烷 (Tetraethyl orthosilicate;TEOS) 水解後的產物二氧化矽 (Silicon dioxide;TiO2) 在奈米金粒子上形成薄膜當作隔板,按此順序層層疊加,隨奈米金粒子之層數達五層,其吸收度是單層奈米金粒子的 11倍,降低玻片型感測器所需的片數。本研究使用玻片型感測器量測八種有機氣體,結果展現良好的靈敏度、再現性、線性關係 (R2>0.99) 且偵測下限 (Limit of detection;LOD) 落在24~392 ppm。不同於玻片型感測器,探頭式探針感測器使用Y型光纖連接光源及
    光譜儀。實驗結果顯示:探針長度越長、外徑越大光反射效果越好。長度5 cm、外徑2 mm之探頭式探針感測器可達單片五層奈米金粒子
    5000~6000 ppm的訊號強度,展現探頭式探針感測器良好的靈敏度。

    This research reports a novel optical probe as a detector for detection of volatile organic compounds (VOCs) based on localized surface plasmon resonance (LSPR) principle using gold and silica (TiO2) nanoparticles composite. The surface of probe soaks in 3-Aminopropyl triethoxysilane (APTMS) solution as crosslinking agent to bond the glass substrate between gold nanoparticles. The gold nanoparticles will coated on glass substrate by self-assemble process and using silica hydrolysis of tetraethyl orthosilicate (TEOS) as bulkhead. Finally, the glass substrate coated on fifth layer of gold nanoparticles with this order. The absorbance of fifth layer gold nanoparticles is 11 times of the single layer gold nanoparticles that the amount of fifth layer gold nanoparticles on slip. This is much less than single layer gold nanoparticles for VOCs detection. We measure eight kinds of VOCs, including m-xylene, butyl acetate, butanol, anisole, 1,4 –dioxane, chlorobenzene, cyclohexanone and octane. The experiments result shows high sensitivity, reproducibility, linearity (R2 >0.99) and the limit of detection (LOD) is about 24~392 ppm.
    Apart from the slip sensor, the probe sensor using Y type optical fiber to connect light source with spectrometer. According to the experiment results, the longer and fatter the higher sensitivity of detecting m-xylene. Signal intensity of length 5 cm and the outer diameter of 2 mm probe is the same as the single slip of fifth layer gold nanoparticles 5000~6000 ppm. This result exhibits probe sensor has good sensitivity in
    the detection of VOCs.

    目錄 中文摘要----------------------------------------------------------------------------i 英文摘要---------------------------------------------------------------------------ii 目錄--------------------------------------------------------------------------------iii 圖目錄----------------------------------------------------------------------------vii 表目錄-----------------------------------------------------------------------------xi 第一章 緒論 1.1 研究背景-------------------------------------------------------------------1 1.2 奈米材料-------------------------------------------------------------------3 1.2.1 小尺寸效應-----------------------------------------------------------4 1.2.2 表面效應--------------------------------------------------------------5 1.2.3 量子尺寸效應--------------------------------------------------------6 1.2.4 光學性質-------------------------------------------------------------7 1.3 表面電漿共振原理-----------------------------------------------------11 1.3.1 漸逝波原理---------------------------------------------------------11 1.3.2 表面電漿波原理---------------------------------------------------13 1.3.3 表面電漿共振現象------------------------------------------------15 1.4 表面電漿共振的應用--------------------------------------------------17 第二章 實驗部分 2.1 實驗藥品、器材與儀器設備-------------------------------------------23 2.1.1 實驗藥品------------------------------------------------------------23 2.1.2 實驗器材------------------------------------------------------------25 2.1.3 儀器設備------------------------------------------------------------26 2.2 奈米金粒子的製備-----------------------------------------------------28  2.3 有機相TEOS溶液的製備---------------------------------------------30  2.4 多層奈米金粒子自組裝於玻璃片表面流程-----------------------31   2.4.1 玻璃片表面清洗---------------------------------------------------31 2.4.2 玻璃表面修飾上APTMS ----------------------------------------31 2.4.3 玻璃表面修飾上奈米金粒子------------------------------------31 2.4.4 將已修飾奈米金粒子玻璃表面修飾TEOS薄膜-------------32 2.4.5 玻璃表面修飾上多層奈米金粒子------------------------------32 2.5 探頭式探針感測器自組裝步驟--------------------------------------34 2.5.1 探頭式探針修飾上五層奈米金粒子---------------------------34 2.5.2 探頭式探針外層鍍銀鏡反應------------------------------------35 2.6 感測系統及數據處理--------------------------------------------------38 2.6.1 感測系統-玻片-----------------------------------------------------38 2.6.2 感測系統-探頭式探針--------------------------------------------40 2.6.3 UV-Vis吸收光譜數據計算方式---------------------------------41 2.6.4 絕對差值總和法 (Total Absolute Differences : TAD)-------42 2.6.5 LabVIEW程式-數據處理-----------------------------------------43 2.6.6 LabVIEW程式-電磁閥控制--------------------------------------45 第三章 結果與討論 3.1 奈米金粒子光譜圖與分析--------------------------------------------47 3.1.1 奈米金粒子溶液之分析------------------------------------------47 3.1.2 奈米金粒子自組裝於玻璃表面之分析------------------------49 3.2多層數奈米金粒子及二氧化矽------------------------------------51 3.2.1 外層為奈米金粒子及二氧化矽之分析------------------------52 3.3 多層奈米金粒子感測器偵測m-xylene之分析--------------------57 3.4 最外層為Au或SiO2之靈敏度與選擇性之比較------------------61 3.5 五層奈米金粒子感測器之分析--------------------------------------65 3.5.1 五層奈米金粒子片數影響---------------------------------------65 3.5.2 三片五層奈米金粒子氣體之影響------------------------------68 3.6 探頭式探針光學感測器最佳參數之探討--------------------------71 3.6.1 修飾銀鏡及五層奈米金粒子對探針之影響------------------71 3.6.2 探針積分時間探討------------------------------------------------73 3.6.3 探針長度探討------------------------------------------------------74 3.6.4 探針外徑探討------------------------------------------------------76 第四章 結論---------------------------------------------------------------------78 參考文獻--------------------------------------------------------------------------80 w

    參考文獻
    1. 陳昱銓, 奈米銀光學感測器之表面修飾與氣體選擇性研究暨微機電-氣體樣品前濃縮裝置之自動化系統建立, 天主教輔仁大學, 2008
    2. Nakashima, H.; Nakajima, D.; Takagi, Y.; Goto, S. J.Health. Sci. 2007, 53, 311-319
    3. Tina,S.; Zhu, L.; Shi, Y. Environ. Sci. Technol. 2004, 38, 489-495
    4. 鍾沛文, 高分子弦振動式氣相層析感測器之原理開發, 國立臺灣師範大學化學系研究所碩士論文, 2011
    5. Jin, Y., Kang, X.; Song, Y., Zhang, B., Cheng, G., Dong, S. Anal. Chem. 2001, 73, 13, 2843-2849
    6. Chen, S., Zhao, Q., Zhang, L., Wang, L., Zeng, Y., & Huang, H. Elsevier, 2015, 221, 1391-1397
    7. Jessica X. H. Wong, Frank S. F. Liu, Hua-Zhong Yu. Anal. Chem. 2014, 86, 24, 11966-11971
    8. 陳鳳宜, 奈米金表面電漿共振原理應用於中空光纖式氣象層析偵測器之研製, 國立台灣師範大學, 2012
    9. 張瑋真, 表面電漿共振原理應用於氣液相化學偵測器之研製, 國立台灣師範大學, 2013
    10. Cao, J., Tu, M. H., Sun, T., Grattan, K. T. Elsevier, 2013, 181, 611-619
    11. Sharad D. Bhagat, A. Venkateswara Rao. Elsevier, 2006, 4289-4297
    12. 李言榮, 惲正中, 材料物理學概論, 五南圖書出版股份有限公司, 2003
    13. 鄭嘉升, 奈米金屬薄膜表面電漿共振光譜之有機氣體反應特性研究, 天主教輔仁大學, 2006
    14. Kubo, R.J. Phys. Soc. Jpn. 1962, 117, 975-981
    15. Willets K. A., Van Duyne R. P., Annu. Rev. Phys. Chem., 2007, 58, 267-297
    16. Evanoff, D. D.; Chumanov, C. J.Phys. Chem. B. 2004, 108, 13957-13962
    17. 邱瑋懿, 以化學表面修飾法增強局部表面電漿共振感測器對氣體之反應, 國立臺灣師範大學, 2015
    18. Heinz Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, Springer Berlin Heidelberg, 1988
    19. Wood, R. W. Phil. Mag. 1902, 4, 396-4022
    20. Otto, A. Z. Phys. Chem. Chem. Phys. 1968, 216, 398-410
    21. Kretschmann, E. Zeitschrift für Physik, 1971, 241, 313-324
    22. B. Pejcic, P. Eadington, A. Ross., Environ. Sci. Technol., 2007, 41, 6333-6342
    23. Liedberg, B. Nylander, C. Lunström, I. Sensors and actuators, 1983,4, 299-304
    24. Jorgenson, R.C. Yee, S.S. Sens. Actuators B, 1993, 12, 213-220
    25. Zhou, J., Chen, M., Qiao, X., Wu, L Langmuir 2006, 24,10175-10179.
    26. C. S. Cheng, Y. Q. Chen, C. J. Lu, Talanta, 2007, 73, 358-365
    27. T. Karakouz, A. Vaskevich, I. Rubinstein, J. Phys. Chem. B, 2008, 112, 14530-14538
    28. K. J. Chen, C. J. Lu, Talanta, 2010, 81, 1670-1675
    29. Cao, Jie, Sensors and Actuators B: Chemical , 2013, 181, 611-619
    30. Chen, S. Zhao, Q. Zhang, L. Wang, L. Zeng, Y. Huang, H. Sensors and Actuators B:Chemical, 2015, 221, 1391-1397
    31. Guo, L. Chen, G. Kim, D. H. Anal. Chem. 2006, 78, 4416-4423
    32. K. C. Grabar, R. G. Freeman, M. B. Hommer, M. J. Natan, Preparation and Characterization of Au Colloid Monolayers, Anal. Chem., 1995, 67, 735-743
    33. Zhang, Z., Jiao, C. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2014, 29, 3, 478-482
    34. https://it.wikipedia.org/wiki/Ortosilicato_tetraetile
    35. http://www.wikiwand.com/en/Sol-gel
    36. Cao, J., Tu, M. H., Sun, T., Grattan, K. T. Sensors and Actuators B: Chemical, 2013, 181, 611-619

    下載圖示
    QR CODE