研究生: |
王遠瑞 Wang, Yuan-Jui |
---|---|
論文名稱: |
可溫控磁粒子頻譜儀之架設與特性研究 Erect and Characteristics of Temperature-controllable magnetic nanoparticle Spectrometer |
指導教授: |
廖書賢
Liao, Shu-Hsien |
學位類別: |
碩士 Master |
系所名稱: |
光電工程研究所 Graduate Institute of Electro-Optical Engineering |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 43 |
中文關鍵詞: | 磁粒子頻譜儀 、溫度控制系統 、磁化頻譜 |
英文關鍵詞: | Magnetic nanoparticle spectrometer, Temperature control system, Magnetization spectrum |
DOI URL: | http://doi.org/10.6345/NTNU202001150 |
論文種類: | 學術論文 |
相關次數: | 點閱:132 下載:4 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文利用磁粒子頻譜儀進行對於磁性奈米粒子的實驗量測,控制外加磁場大小、不同粒徑及在不同的環境溫度下等不同變因,使用磁粒子頻譜分析系統(Magnetic Particle Spectrum Analyzer,MPS),可以測得磁性奈米粒子的在不同變因下的磁化頻譜以進行分析。
本研究加入溫度控制系統結合磁粒子頻譜儀,溫控系統由溫度控制器、陶瓷加熱片、溫度感測線、風扇、保溫箱所組成,可以使環境溫度在25℃至50℃變化並監控箱內溫度,且升溫速度快可以在20分鐘將環境溫度升至50℃。
溫控系統可以使磁粒子頻譜儀在不同實驗環境下獲得磁性奈米粒子具溫度依賴性的諧波訊號,並利用5th/3rd harmonic強度比值觀察當溫度上升時的諧波變化,透過強度的下降值及下降率顯示當溫度上升時無論外加磁場大小,強度的下降幅度大致相同。
透過磁化頻譜來分析磁性奈米粒子的特性變化,以3rd/1st harmonic及2nd/1st harmonic來觀察外加磁場、磁性粒子粒徑、環境溫度等變因對於磁化強度的影響,實驗結果顯示,當外加磁場增加或粒徑增加時,獲得的磁化強度也會變大,若外加DC offset,隨DC訊號增加磁化強度則會到一最大值後漸漸下降,再透過磁化曲線利用程式模擬磁化頻譜以驗證實驗結果。
This paper uses magnetic nanoparticle Spectrometer to carry out the experimental measurement of magnetic nanoparticles, controlling the size of the applied magnetic field, different particle diameters and under different environmental temperatures, using a magnetic particle spectrum analyzer (MPS), the magnetization spectrum of magnetic nanoparticles under different variables can be measured for analysis.
In this study, a temperature control system combined with magnetic nanoparticle Spectrometer. The temperature control system is composed of a temperature controller, a ceramic heater, a temperature sensing line, a fan, and an incubator, which can change the ambient temperature from 25°C to 50°C and monitor the internal temperature in the box and has fast heating speed can raise the ambient temperature to 50°C in 20 minutes.
The temperature control system can enable the magnetic nanoparticle Spectrometer to obtain temperature-dependent harmonic signals of magnetic nanoparticles under different experimental environments, and use the 5th/3rd harmonic ratio to observe the changes in the harmonic intensity when the temperature rises, and use the decay value and decay rate of the intensity show that when the temperature rises, regardless of the size of the applied magnetic field, the decay in intensity is approximately the same.
The magnetization spectrum was used to analyze the characteristic changes of magnetic nanoparticles, and the 3rd/1st harmonic and 2nd/1st harmonic ratio were used to observe the influence of applied magnetic field magnetic particle size, environmental temperature on the magnetization. Experimental results show that when the apply field or particle size increases, the obtained magnetization will also become larger. If the DC offset is applied, the magnetization will increase with the DC signal. The intensity will gradually decrease after reaching a maximum value, and then use the program to simulate the magnetization spectrum through MH Curve to verify the experimental results.
[1] Gleich B, and Weizenecker J, “Tomographic imaging using the nonlinear response of magnetic particles,” Nature, vol. 435, no. 7046, 1412-7, Jun 2005.
[2] Weizenecker J, Borgert J, and Gleich B. “A simulation study on the resolution and sensitivity of magnetic particle imaging,” Phys. Med. Biol, vol. 52, no. 21, p. 6363-74, Nov 2007.
[3] Liang ZP, and Lauterbur PC: Principles of Magnetic Resonance Imaging, New York: IEEE, Inc.; 2000.
[4] Rudolf Hergt, Silvio Dutz, Robert Müller, and Matthias Zeisberger. “Magnetic particle hyperthermia: nanoparticle magnetism and materials development for cancer therapy,” Journal of Physics: Condensed Matter, vol. 18, no. 38, Sep 2006
[5] Hergt R, Dutz S, and Röder M., “Effects of size distribution on hysteresis losses of magnetic nanoparticles for hyperthermia,” Journal of Physics Condensed Matter, vol. 20, no. 38, p. 385214, Sep. 2008.
[6] Kung-Shan Cheng, “An Introduction to the Principles of Thermal Therapy for Cancer Using Magnetic Particles in Nanometer Scales”科儀新知;192期 (2013 / 02 / 01),P87 - 96.
[7] Nicolas Garraud, Rohan Dhavalikar, Lorena Maldonado-Camargo,David P.Arnold,and Carlos Rinaldi., “Design and validation of magnetic particle spectrometer for characterization of magnetic nanoparticle relaxation dynamics” AIP Advances 7, 056730 (2017).
[8] Weaver J B, Rauwerdink A M, Sullivan C R, and Baker I, “Frequency distribution of the nanoparticle magnetization in the presence of a static as well as a harmonic magnetic field.” Med. Phys, vol. 35, no. 3, p. 1988–94, May 2008
[9] Stefaan Vandendriessche, Ward Brullot, Dimitar Slavov, Ventsislav K. Valev, and Thierry Verbiest, “Magneto-optical harmonic susceptometry of superparamagnetic materials.” Appl. Phys. Applied Physics Letters, vol. 102, no. 16, Mar 2013
[10] Knobel M1, Nunes WC, Socolovsky LM, De Biasi E, Vargas JM, and Denardin JC, “Superparamagnetism and other magnetic features in granular materials: a review on ideal and real systems.” J. Nanosci. Nanotechnol, vol. 8, no. 6, Jun 2008.
[11] Kai Wu, Akash Batra, Shray Jain, and Jian-Ping Wang, “Magnetization Response Spectroscopy of Superparamagnetic Nanoparticles Under Mixing Frequency Fields.” IEEE TRANSACTIONS ON MAGNETICS, vol. 52, no. 7, Jul 2016.
[12] NEIL SMITH, “Reciprocity Principles for Magnetic Recording Theory.” IEEE TRANSACTIONS ON MAGNETICS, vol. MAG-23, no. 4, Jul 1987