簡易檢索 / 詳目顯示

研究生: 莊惟傑
Chuang, Wei-Chieh
論文名稱: 以彎曲感測器為基礎的連續手指手勢辨識之研究
Continuous Finger Gesture Recognition Based on Flex Sensors
指導教授: 黃文吉
學位類別: 碩士
Master
系所名稱: 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 46
中文關鍵詞: 智慧穿戴式系統智慧手套嵌入式系統手指手勢辨識
英文關鍵詞: Flex Sensor, Detection
DOI URL: http://doi.org/10.6345/NTNU201900309
論文種類: 學術論文
相關次數: 點閱:159下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文的目的為,開發一款以 Flex Sensor 為基礎的智慧手套系統。該系統透過 Flex Sensor 感測手指的細微動作變化,並使用 Gated Recurrent Unit(GRU) 辨識複雜的手指連續手勢。在智慧手套的硬體層面,具備有高續航力以及高耐久等優點;法則層面,解決了連續多個手勢間,複雜的轉接造成的辨識問題;以及解決了因手指動作較難有明確的起始與終止,所造成的重複與不完美手勢問題。在應用層面,本論文提出 Detection 法則,判斷手勢的當前狀態。使本論文開發的智慧手套,不需藉由額外的裝置按鈕,進行起始與結束的控制。綜合以上的優點,說明本論文提出的智慧手套系統的實用性。

    摘要 i 目錄 ii 圖目錄 iii 表目錄 iv 第一章 緒論 1 1-1 研究背景 1 1-2 研究目的 3 1-3 研究貢獻 5 第二章 智慧手套系統 7 2-1 元件探討 7 2-2 設計圖與成品 11 第三章 演算法則 13 3-1 手勢資料收集方式 13 3-2 GRU(Gated Recurrent Unit) 15 3-3 手勢資料的前處理 17 3-4 手勢介紹 18 3-5 手勢辨識法則與資料集 19 第四章 實驗結果 29 4-1 實驗環境介紹 29 4-2 實驗數據 30 第五章 結論 44 參考文獻 45

    [1] S. Mitra, T. Acharya, ”Gesture Recognition: A Survey,” IEEE Trans. Syst. Man, Cybern. C, Vol. 37, pp. 311-324, 2007

    [2] G. Zhu, L. Zhang, P. Shen, J. Song, ”Multimodal Gesture Recognition Using 3-D Convolution and Convolutional LSTM,” IEEE Access, Vol. 5, pp. 4517-4524, 2017.

    [3] O. K. Oyedotun, A. Khashman, ”Deep Learning in Vision-Based Static Hand Gesture Recognition,” Neural Computing and Applications, Vol. 28, pp.3941-3951, 2017.

    [4] H. Cheng, L. Yang, Z. Liu, ”Survey on 3D Hand Gesture Recognition,” IEEE Trans. Circuits and Systems for Video Tech., Vol. 26, pp. 1659-1673, 2016.

    [5] P. Wang, W. Li, S. Liu, Z. Gao, C. Tang, P. Ogunbona, ”Large-scale Isolated Gesture Recognition Using Convolutional Neural Networks,” In Proceedings of the IEEE Int. Conference on Pattern Recognition, Cancun, Mexico, 4-8 December 2016; pp. 7-12.

    [6] S. S. Rautaray and A. Agrawal, ”Vision Based Hand Gesture Recognition for Human Computer Interaction: a Survey,” Artif. Intell. Rev., pp.1-40, 2015.

    [7] S. Berman, H. Stern, ”Sensors for Gesture Recognition Systems,” IEEE Trans. Syst. Man, Cybern. C, Vol. 42, pp. 277-290, 2012.

    [8] X. Zhang, X. Chen, Y. Li, V. Lantz, K. Wang, J. Yang, ”A Framework for Hand Gesture Recognition Based on Accelerometer and EMG Sensors,” IEEE Trans. Syst. Man, Cybern. A, Vol. 41, pp. 1064-1076, 2011.

    [9] H. P. Gupta, H. S. Chudgar, S. Mukherjee, T. Dutta, K. Sharma, ”A Continuous Hand Gesture Recognition Technique for Human Machine Interaction Using Accelerometer and Gyroscope Sensors,” IEEE Sensors Journal, Vol. 16, pp. 6425-6432, 2016.

    [10] T. Zhao, J. Liu, Y. Wang, H. Liu, Y. Chen, ”PPG-Based Finger-Level Gesture Recognition Leveraging Wearables,” In Proceedings of the IEEE Conference on Computer Communications, Honolulu, HI, USA, 15-19 April 2018; pp. 1457-1465.

    [11] V. Pathak, S. Mongia, G. Chitranshi, ”A Framework for Hand Gesture Recognition Based on Fusion of Flex, Contact and Accelerometer Sensor,” In Proceedings of the IEEE Conference on Image Information Processing, 21-24 December 2015; pp. 312-319.

    [12] K. Liu, C. Chen, R. Jafari, N. Kehtarnavaz, ”Fusion of Inertial and Depth Sensor Data for Robust Hand Gesture Recognition,” IEEE Sensors Journal, Vol. 14, pp. 1898-1903, 2014.

    [13] G. Saggio, ”Mechanical Model of Flex Sensors Used to Sense Finger Movements,” Sensors and Actuators A: Physical, Vol. 185, pp.53-58, 2012.

    [14] G. Saggio, F. Riillo, L. Sbernini, L. R. Quitadamo, ”Resistive Flex Sensors: a Survey,” Smart Materials and Structures, Vol. 25, 013001, 2015.

    [15] K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, Y. Bengio, ”Learning Phrase Representation Using RNN Encoder-Decoder for Statistical Machine Translation,” In Proceedings of Conference on Empirical Methods in Natural Language Processing, Doha, Qatar, 25-29 October 2014; pp. 1724-1734.

    [16] J. Chung, C. Gulcehre, K. Cho, Y. Bengio, ”Empirical Evaluation of Gated Recurrent Neural Networks on Sequential Modeling,” In Proceedings of NIPS Workshop on Deep learning and Representation, 12 December, Montreal, Canada, 2014; pp. 1-9.

    [17] C. Goncalves, A. F. da Silva, J. Gomes, R. Simoes, ”Wearable E-Textile Technologies: A Review on Sensors, Actuators and Control Elements,” Inventions, Vol. 3, 3010014, 2018.

    [18] L. Buechley, M. Eisenberg, ”The LilyPad Arduino: Toward Wearable Engineering for Everyone,” IEEE Pervasive Computing, Vol. 7, pp. 12- 15, 2008.

    [19] K. H. Chang, ”Bluetooth: a viable solution for IOT?,” IEEE Wireless Communications, Vol. 21, pp. 6-7, 2014.

    [20] M. Stoppa, A. Chiolerio, ”Wearable Electronics and Smart Textiles: A Critical Review,” Sensors, Vol. 14, pp. 11957-11992, 2014.

    下載圖示
    QR CODE