研究生: |
莊惟傑 Chuang, Wei-Chieh |
---|---|
論文名稱: |
以彎曲感測器為基礎的連續手指手勢辨識之研究 Continuous Finger Gesture Recognition Based on Flex Sensors |
指導教授: | 黃文吉 |
學位類別: |
碩士 Master |
系所名稱: |
資訊工程學系 Department of Computer Science and Information Engineering |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 46 |
中文關鍵詞: | 智慧穿戴式系統 、智慧手套 、嵌入式系統 、手指手勢辨識 |
英文關鍵詞: | Flex Sensor, Detection |
DOI URL: | http://doi.org/10.6345/NTNU201900309 |
論文種類: | 學術論文 |
相關次數: | 點閱:159 下載:9 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文的目的為,開發一款以 Flex Sensor 為基礎的智慧手套系統。該系統透過 Flex Sensor 感測手指的細微動作變化,並使用 Gated Recurrent Unit(GRU) 辨識複雜的手指連續手勢。在智慧手套的硬體層面,具備有高續航力以及高耐久等優點;法則層面,解決了連續多個手勢間,複雜的轉接造成的辨識問題;以及解決了因手指動作較難有明確的起始與終止,所造成的重複與不完美手勢問題。在應用層面,本論文提出 Detection 法則,判斷手勢的當前狀態。使本論文開發的智慧手套,不需藉由額外的裝置按鈕,進行起始與結束的控制。綜合以上的優點,說明本論文提出的智慧手套系統的實用性。
[1] S. Mitra, T. Acharya, ”Gesture Recognition: A Survey,” IEEE Trans. Syst. Man, Cybern. C, Vol. 37, pp. 311-324, 2007
[2] G. Zhu, L. Zhang, P. Shen, J. Song, ”Multimodal Gesture Recognition Using 3-D Convolution and Convolutional LSTM,” IEEE Access, Vol. 5, pp. 4517-4524, 2017.
[3] O. K. Oyedotun, A. Khashman, ”Deep Learning in Vision-Based Static Hand Gesture Recognition,” Neural Computing and Applications, Vol. 28, pp.3941-3951, 2017.
[4] H. Cheng, L. Yang, Z. Liu, ”Survey on 3D Hand Gesture Recognition,” IEEE Trans. Circuits and Systems for Video Tech., Vol. 26, pp. 1659-1673, 2016.
[5] P. Wang, W. Li, S. Liu, Z. Gao, C. Tang, P. Ogunbona, ”Large-scale Isolated Gesture Recognition Using Convolutional Neural Networks,” In Proceedings of the IEEE Int. Conference on Pattern Recognition, Cancun, Mexico, 4-8 December 2016; pp. 7-12.
[6] S. S. Rautaray and A. Agrawal, ”Vision Based Hand Gesture Recognition for Human Computer Interaction: a Survey,” Artif. Intell. Rev., pp.1-40, 2015.
[7] S. Berman, H. Stern, ”Sensors for Gesture Recognition Systems,” IEEE Trans. Syst. Man, Cybern. C, Vol. 42, pp. 277-290, 2012.
[8] X. Zhang, X. Chen, Y. Li, V. Lantz, K. Wang, J. Yang, ”A Framework for Hand Gesture Recognition Based on Accelerometer and EMG Sensors,” IEEE Trans. Syst. Man, Cybern. A, Vol. 41, pp. 1064-1076, 2011.
[9] H. P. Gupta, H. S. Chudgar, S. Mukherjee, T. Dutta, K. Sharma, ”A Continuous Hand Gesture Recognition Technique for Human Machine Interaction Using Accelerometer and Gyroscope Sensors,” IEEE Sensors Journal, Vol. 16, pp. 6425-6432, 2016.
[10] T. Zhao, J. Liu, Y. Wang, H. Liu, Y. Chen, ”PPG-Based Finger-Level Gesture Recognition Leveraging Wearables,” In Proceedings of the IEEE Conference on Computer Communications, Honolulu, HI, USA, 15-19 April 2018; pp. 1457-1465.
[11] V. Pathak, S. Mongia, G. Chitranshi, ”A Framework for Hand Gesture Recognition Based on Fusion of Flex, Contact and Accelerometer Sensor,” In Proceedings of the IEEE Conference on Image Information Processing, 21-24 December 2015; pp. 312-319.
[12] K. Liu, C. Chen, R. Jafari, N. Kehtarnavaz, ”Fusion of Inertial and Depth Sensor Data for Robust Hand Gesture Recognition,” IEEE Sensors Journal, Vol. 14, pp. 1898-1903, 2014.
[13] G. Saggio, ”Mechanical Model of Flex Sensors Used to Sense Finger Movements,” Sensors and Actuators A: Physical, Vol. 185, pp.53-58, 2012.
[14] G. Saggio, F. Riillo, L. Sbernini, L. R. Quitadamo, ”Resistive Flex Sensors: a Survey,” Smart Materials and Structures, Vol. 25, 013001, 2015.
[15] K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, Y. Bengio, ”Learning Phrase Representation Using RNN Encoder-Decoder for Statistical Machine Translation,” In Proceedings of Conference on Empirical Methods in Natural Language Processing, Doha, Qatar, 25-29 October 2014; pp. 1724-1734.
[16] J. Chung, C. Gulcehre, K. Cho, Y. Bengio, ”Empirical Evaluation of Gated Recurrent Neural Networks on Sequential Modeling,” In Proceedings of NIPS Workshop on Deep learning and Representation, 12 December, Montreal, Canada, 2014; pp. 1-9.
[17] C. Goncalves, A. F. da Silva, J. Gomes, R. Simoes, ”Wearable E-Textile Technologies: A Review on Sensors, Actuators and Control Elements,” Inventions, Vol. 3, 3010014, 2018.
[18] L. Buechley, M. Eisenberg, ”The LilyPad Arduino: Toward Wearable Engineering for Everyone,” IEEE Pervasive Computing, Vol. 7, pp. 12- 15, 2008.
[19] K. H. Chang, ”Bluetooth: a viable solution for IOT?,” IEEE Wireless Communications, Vol. 21, pp. 6-7, 2014.
[20] M. Stoppa, A. Chiolerio, ”Wearable Electronics and Smart Textiles: A Critical Review,” Sensors, Vol. 14, pp. 11957-11992, 2014.