研究生: |
葉建宏 Ye, Jian-Hong |
---|---|
論文名稱: |
內隱信念、虛擬實境中的專注力及空間能力、設計心流體驗與圖形創意表現:模式建構與驗證 Incremental Brief, Concentration and Spatial in VR, Design Flow Experience and Graphic Creative Performance: A Perspective of Structural Equation Modeling |
指導教授: |
洪榮昭
Hong, Jon-Chao |
學位類別: |
博士 Doctor |
系所名稱: |
工業教育學系 Department of Industrial Education |
論文出版年: | 2020 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 205 |
中文關鍵詞: | 心流體驗 、空間能力 、專注力 、創意表現 、智能信念 |
英文關鍵詞: | concentration, creativity performance, flow experience, spatial ability, intelligence belief |
DOI URL: | http://doi.org/10.6345/NTNU202001733 |
論文種類: | 學術論文 |
相關次數: | 點閱:264 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
智能信念雖然已被用來解釋對於認知、行為與創造力結果的影響性,但應用於創造力研究仍屬於少數,且過去多集中於成年人族群,對於未成年族群的討論則較少被關注。因此,為能有效擴展智能信念對於未成年學習者創意表現的影響性之理解。本研究在基於內隱智能理論的基礎下,提出八條研究假設路徑進行探析,以及一個研究模式進行驗證。為達研究目的,本研究應用調查研究方法及實驗設計,經由立意取樣方式,邀請新北市某一技術型高中廣告設計科一年級與二年級學生參與本研究。首先參與者二款VR學習評量系統進行專注力及空間能力表現評量,接著進行圖形創作以及問卷填寫。而研究刪除無效的數據資料後,有效樣本數為273份(有效回收率88.9%),接著再藉由SPSS 23.0進行信度與效度分析、差異性分析,以及應用AMOS 20.0進行整體適配度分析與研究模型驗證,並針對學習者應用操作VR的成果表現,進行能力表現的描述性統計分析。研究結果顯示:一、美感智能發展信念對於專注力表現及空間能力表現具有正影響;二、空間智能固化信念對於專注力表現及空間能力表現具有負影響;三、專注力表現對於空間能力表現及設計心流體驗具有正影響;四、空間能力表現對於設計心流體驗具有正影響;五、設計心流體驗對於圖形創意表現具有正影響。最後,本研究依據分析結果提出研究討論、研究結論、理論性與實務性之建議、後續研究建議,以及研究貢獻。
Although intelligent beliefs have been used to explain the effect on the results of cognition, behavior and creativity. However, there are only a few studies related to alternative creativity and these studies mostly focused on the adult ethnic group. Therefore, in order to effectively expand the understanding of the effect in intelligent beliefs on minor learners. This study, based on the basis of intelligent implicit theory, proposed eight research hypothetical paths to analyze and verify the research model. Therefore, in order to achieve the research purpose, this study applied survey research methods and experimental design. The participants were recruited using purposive sampling method, inviting grade 10 and grade 11 that studied advertising and designs in a technical high school in New Taipei City. Participants first evaluated the performance of concentration and spatial ability by two virtual reality (VR) learning evaluation systems, then printed graphic creation and then filled out the questionnaires. After the deletion of invalid data, the valid data were 273 (88.9%). The valid data were then analyzed using SPSS 23.0 to conduct reliability and validity analysis and t test analysis. In addition, AMOS 20.0 was used for overall fitness analysis, research model verification, learner’s VR application operating performance and descriptive statistical analysis to explore learners’ ability performance.
The results of the study show that: 1. Incremental brief of aesthetic Intelligence have a positive effect on VR concentration performance and VR spatial performance; 2. Entity brief of spatial intelligence have a negative effect on VR concentration performance and VR spatial performance; 3. VR concentration performance has a positive effect on VR spatial performance and design flow experience; 4. VR spatial performance has a positive effect on design flow experience; 5. The design flow experience has a positive effect on graphic creative performance. Finally, based on the analysis results, this research proposes research discussions, research conclusions, theoretical and practical recommendations, follow-up research recommendations, and research contributions.
壹、中文文獻
王振龍、胡永宏(2007)。應用時間序列分析。北京:科學出版社。
王祖遠(2015)。怎樣提高孩子的專注力?青春期健康:家庭文化,2015(1),42-42。
左台益、梁勇能(2001)。國二學生空間能力與 van Hiele 幾何思考層次相關性研究。師大學報:科學教育類,46(1,2),1-20。
伍雲秀(2011)。在廣告設計中看圖形的本質。武漢紡織大學學報,24(5),27-29。
何友鋒、陸建浩、沈永堂(2008)。建築系高中職學生空間設計能力評量之研究。設計學報,11(2),83-99。
何惠麗、曹俊德(2018)。美感教育對幼兒園發展之探究。學校行政,113,37-55。
吳小梅、郭朝陽(2014)。心流體驗研究方法評述。現代管理科學,2014(5),104-106。
吳宏、汪仲文(2014)。中小學生空間能力的構成要素與水平層次及評價指標。數學教育學,23(5),41-45。
吳明隆(2009)。結構方程模式:AMOS的操作與應用(附光碟)。臺北:五南。
吳桂香(2012)。平面廣告設計中圖形創意表達的基本原則。藝術教育,2012(5),140。
吳羨(2014)。簡單教育教學中培養學生專注力的方法與策略。吉林省教育學院學報:中旬,30(10),88-89。
李佩東、葉建宏(2017)。臺灣美感教育之可行推動策略。臺灣教育評論月刊,6(7),134-137。
李岳進(2000)。訓練集中注意力的技巧。體育科技,2000(3),16-18。
李玲玉(2007)。運用音樂治療提升特殊幼兒專注力之成效探討。朝陽人文社會學刊 5(1),211-240。
李彬彬,王敏敏(2005)。創新型廣告人才創造力結構培養的實證研究。江南大學學報(人文社會科學版),3(2),55-58。
李淑菁(2015)。找回課堂專注力。臺灣教育評論月刊,4(5),178-181。
李慧芳(2009)。創造力99 解析。設計學報,5(1),33-50。
林玉雯、黃台珠、劉嘉茹(2010)。課室學習專注力之研究-量表發展與分析應用。科學教育學刊,18(2),107-129。
林凱胤(2014)。即時回饋機制對學生學習專注力影響之研究。科學教育學刊,22(1),87-107。
林漢裕、李玉琇(2010)。空間短期記憶、空間工作記憶與空間能力對圖學表現的影響。設計學報,15(4),1-18。
林鋐宇、李柏森、張文典、洪福源(2013)。不同性別注意力缺陷過動症與普通學童之注意力表現差異探究。特殊教育研究學刊,38(2),29-51。
洪珮華、馬睿平、林榮泰(2017)。學童手繪空間表現與三度設計能力之關係探究。設計學報,22(3),45-68。
洪榮昭、何雅娟、葉建宏、吳宇豐、戴凱欣(2020)。空間能力評量系統:圖學表現、遊戲興趣、遊戲焦慮及持續遊玩意願之相關研究。中等教育,71(1),30-52。
胡夢蕾(2006)。我國創造力與人格特質研究之回顧與探析。教育學刊,26,215-239。
高振耀(2012)。解開創造力的奧秘:創造力的四個 P。特教論壇,12,1-12。
康鳳梅、簡慶郎、詹秉鈞(2003)。工程圖交線電腦化創意教材提昇學生空間能力之研究。師大學報:科學教育類,48(2),225-238。
張正杰、莊秀卿、羅綸新(2014)。多媒體呈現模式與認知風格對國小自然科學學習成效之影響。教育傳播與科技研究,108,31-48。
教育部統計處(2018)。教育統計簡訊《第 85 號》。取自http://163.23.175.9/ePaper/201803/%E9%AB%98%E7%B4%9A%E4%B8%AD%E7%AD%89%E5%AD%B8%E6%A0%A1%E7%94%B7%E5%A5%B3%E7%B5%90%E6%A7%8B%E5%8F%8A%E9%81%B8%E8%AE%80%E6%A6%82%E6%B3%81.pdf
郭生玉(2010)。教育測驗與評量(三版)。臺中市:精華書局。
陳寬裕、王正華(2018)。結構方程模型:運用AMOS分析。臺北:五南。
黃光男(2013)。美感教育概述,臺灣教育,682,8-12。
廖信、蔡雅竹、林律嘉(2014)。高職廣告設計科學生想像力與專題製作學習成就相關之探討。中華印刷科技年報,2014,468-482。
廖信、蔡雅竹、潘怡臻(2015)。高職廣告設計科學生想像力與繪圖實作表現關係之研究。創造學刊,6(2),5-26。
蔡文興、陳裕鏞(2012)。射擊運動訓練對心跳率與專注力的影響-以楓樹國小為例。體育學系(所)刊,12,1-12。
蕭文龍、陳世智(2018)。AMOS結構方程模式最佳入門實用書。臺北:碁峰。
糜淑娥(2008)。在廣告設計教學中培養學生的創新能力。美術大觀,2008(6),171。
鍾光洋、陳春色(2018)。從設計產業人力需求探討技術型高中廣告設計科課程發展。育達科大學報,46,73-88。
豐明高(2005)。廣告視覺傳達與創意表現。包裝工程,26(2), 135 - 137。
貳、英文文獻
Abedi, G., Rostami, F., & Nadi, A. (2015). Analyzing the dimensions of the quality of life in hepatitis B patientsusing confirmatory factor analysis. Global Journal of Health Science, 7(7), 22-31.
Abuin-Porras, V., Villafañe, J. H., Jiménez-Antona, C., Palacios, A., Martínez-Pascual, B., & Rodríguez-Costa, I. (2018). Relationship between attention and balance: A dual-task condition study in children. Journal of Exercise Rehabilitation, 14(3), 349-355.
Ahlberg, G., Enochsson, L., Gallagher, A. G., Hedman, L., Hogman, C., McClusky III, D. A., ... & Arvidsson, D. (2007). Proficiency-based virtual reality training significantly reduces the error rate for residents during their first 10 laparoscopic cholecystectomies. The American Journal of Surgery, 193(6), 797-804.
Ahmadi, N., Peter, L., Lubart, T., & Besançon, M. (2019). School environments: Friend or foe for creativity education and research? In C. A. Mullen (Ed.), Creativity under duress in education? (pp. 255-266). Cham, CH: Springer.
Alemdag, E., & Cagiltay, K. (2018). A systematic review of eye tracking research on multimedia learning. Computers & Education, 125, 413-428.
Alexiou, K., Zamenopoulos, T., Johnson, J. H., & Gilbert, S. J. (2009). Exploring the neurological basis of design cognition using brain imaging: Some preliminary results. Design Studies, 30(6), 623-647.
Altman, D. G., & Bland, J. M. (2011). How to obtain the confidence interval from a p value. British Medical Journal, 343, d2090.
Amabile, T. M. (2012). Componential theory of creativity. Retrieved from http://www.hbs.edu/faculty/Publication%20Files/12-096.pdf
Amabile, T. M., Barsade, S. G., Mueller, J. S., & Staw, B. M. (2005). Affect and creativity at work. Administrative Science Quarterly, 50(3), 367-403.
Andarab, M. S., & Rouhi, A. (2014). Let's replace words with pictures: The role of pictures and spatial intelligence in learning English idioms. Theory and Practice in Language Studies, 4(2), 244-254.
Anderson, J. R. (2004). Cognitve psychology and its implications (6th ed.). New York, NY: Worth Publishers.
Anindyarini, R., & Rosnawati, R. (2019). A construct validity of spatial literacyinstrument. Journal of Physics: Conference Series, 1397, 012092.
Anusha, S., Vijayalakshmi, K., & Venkatesan, L. (2018). Effectiveness of virtual reality therapy upon concentration among secondary school students. TNNMC Journal of Nursing Education and Administration, 6(1), 34-40.
Asakawa, K. (2004). Flow experience and autotelic personality in Japanese college students: How do they experience challenges in daily life? Journal of Happiness Studies, 5(2), 123-154.
Aubé, C., Brunelle, E., & Rousseau, V. (2014). Flow experience and team performance: The role of team goal commitment and information exchange. Motivation and Emotion, 38(1), 120-130.
Awang, Z. (2015). SEM made simple, a gentle approach to learning structural equation modeling. Selangor, MY: MPWS Rich Publication Sdn. Bhd.
Awang, Z., Afthanorhan, A., & Mamat, M. (2016). The Likert scale analysis using parametric based structural equation modeling (SEM). Computational Methods in Social Sciences, 4(1), 13-21.
Baas, M., de Dreu, C. K., & Nijstad, B. A. (2008). A meta-analysis of 25 years of mood-creativity research: Hedonic tone, activation, or regulatory focus? Psychological Bulletin, 134(6), 779-806.
Baer, M., Oldham, G. R., & Cummings, A. (2003). Rewarding creativity: When does it really matter? Leadership Q, 14, 569-586.
Bakir, N. (2016). Technology and teacher education: A brief glimpse of the research and practice that have shaped the field. TechTrends, 60(1), 21-29.
Bakker, A. B. (2008). The work-related flow inventory: Construction and initial validation of the WOLF. Journal of Vocational Behavior, 72(3), 400-414.
Bardeen, J. R., & Stevens, E. N. (2015). Sex differences in the indirect effects of cognitive processes on anxiety through emotion regulation difficulties. Personality and Individual Differences, 81, 180-187.
Barzilai, S., & Blau, I. (2014). Scaffolding game-based learning: Impact on learning achievements, perceived learning, and game experiences. Computers & Education, 70, 65-79.
Bashabsheh, A. K., Alzoubi, H. H., & Ali, M. Z. (2019). The application of virtual reality technology in architectural pedagogy for building constructions. Alexandria Engineering Journal, 58(2), 713-723.
Batey, M., & Hughes, D. J. (2017). Individual difference correlates of self-perceptions of creativity. In M. Karwowski & J. C. Kaufman (Eds.), The creative self: Effect of beliefs, self-efficacy, mindset, and identity explorations in creativity research (pp. 185-218). Amstelredam, NL: Elsevier.
Batey, M., Furnham, A., & Safiullina, X. (2010). Intelligence, general knowledge and personality as predictors of creativity. Learning and Individual Differences, 20(5), 532-535.
Beck, D. (in press). Augmented and virtual reality in education: Immersive learning research. Journal of Educational Computing Research. Retrieved from https://doi.org/10.1177/0735633119854035
Bendall, R. C., Lambert, S., Galpin, A., Marrow, L. P., & Cassidy, S. (2019). Psychophysiological indices of cognitive style: A triangulated study incorporating neuroimaging, eye-tracking, psychometric and behavioral measures. Personality and Individual Differences, 144, 68-78.
Benedek, M., Jauk, E., Sommer, M., Arendasy, M., & Neubauer, A. C. (2014). Intelligence, creativity, and cognitive control: The common and differential involvement of executive functions in intelligence and creativity. Intelligence, 46, 73-83.
Benitez, J., Henseler, J., Castillo, A., & Schuberth, F. (2020). How to perform and report an impactful analysis using partial least squares: Guidelines for confirmatory and explanatory IS research. Information & Management, 57(2), 103168.
Bido, D., da Silva, D., & Ringle, C. (2014). Structural Equation Modeling with the SmartPLS. Brazilian Journal of Marketing, 13(2), 56-73.
Birchall, D. (2015). Spatial ability in radiologists: A necessary prerequisite? The British Journal of Radiology, 88(1049), 20140511.
Blackwell, L. S. (2002). Psychological mediators of student achievement during the transition to junior high school: The role of implicit theories (Unpublished doctoral dissertation). Columbia University, New York.
Blackwell, L. S., Trzesniewski, K. H., & Dweck, C. S. (2007). Implicit theories of intelligence predict achievement across an adolescent transition: A longitudinal study and an intervention. Child Development, 78(1), 246-263.
Blissing, B., Bruzelius, F., & Eriksson, O. (2019). Driver behavior in mixed and virtual reality - A comparative study. Transportation Research part F: Traffic Psychology and Behavior, 61, 229-237.
Bonnardel, N., & Pichot, N. (2020). Enhancing collaborative creativity with virtual dynamic personas. Applied Ergonomics, 82, 102949.
Boons, M., & Stam, D. (2019). Crowdsourcing for innovation: How related and unrelated perspectives interact to increase creative performance. Research Policy, 48(7), 1758-1770.
Bozikas, V. P., Kosmidis, M. H., Kioperlidou, K., & Karavatos, A. (2004). Relationship between psychopathology and cognitive functioning in schizophrenia. Comprehensive Psychiatry, 45(5), 392-400.
Braasch, J. L., Bråten, I., Strømsø, H. I., & Anmarkrud, Ø. (2014). Incremental theories of intelligence predict multiple document comprehension. Learning and Individual Differences, 31, 11-20.
Bråten, I., & Strømsø, H. I. (2004). Epistemological beliefs and implicit theories of intelligence as predictors of achievement goals. Contemporary Educational Psychology, 29(4), 371-388.
Brown, T. A., & Moore, M. T. (2012). Confirmatory factor analysis. In R. H. Hoyle (Ed.), Handbook of structural equation modeling (pp. 361-379). Boston, MA: Center for Anxiety & Related Disorders, Department of Psychology, Boston University.
Bruning, R. H. (2004). Cognitive psychology and instruction. Upper Saddle River, NJ: Pearson.
Bruning, R. H., Schraw, G. J., & Norby, M. M. (2011). Cognitive psychology and instruction (5th ed.). Boston, MA: Pearson.
Budde, H., Voelcker-Rehage, C., Pietraßyk-Kendziorra, S., Ribeiro, P., & Tidow, G. (2008). Acute coordinative exercise improves attentional performance in adolescents. Neuroscience Letters, 441(2), 219-223.
Buehl, M. M., & Alexander, P. A. (2005). Motivation and performance differences in students' domain‐specific epistemological belief profiles. American Education Research Journal, 42, 697-726.
Burnette, J. L., O'Boyle, E. H., VanEpps, E. M., Pollack, J. M., & Finkel, E. J. (2013). Mind-sets matter: A meta-analytic review of implicit theories and self-regulation. Psychological Bulletin, 139(3), 655-701.
Burton, L. J., & Fogarty, G. J. (2003). The factor structure of visual imagery and spatial abilities. Intelligence, 31(3), 289-318.
Cabello, R., & Fernández-Berrocal, P. (2015). Implicit theories and ability emotional intelligence. Frontiers in Psychology, 6, 700.
Çakiroğlu, Ü., & Gökoğlu, S. (2019). Development of fire safety behavioral skills via virtual reality. Computers & Education, 133, 56-68.
Chang, J. J., Lin, W. S., & Chen, H. R. (2019). How attention level and cognitive style affect learning in a MOOC environment? Based on the perspective of brainwave analysis. Computers in Human Behavior, 100, 209-217.
Chang, P. W., Chen, B. C., Jones, C. E., Bunting, K., Chakraborti, C., & Kahn, M. J. (2018). Virtual reality supplemental teaching at low-cost (VRSTL) as a medical education adjunct for increasing early patient exposure. Medical Science Educator, 28(1), 3-4.
Chang, S. C., Hsu, T. C., Chen, Y. N., & Jong, M. S. Y. (2020). The effects of spherical video-based virtual reality implementation on students’ natural science learning effectiveness. Interactive Learning Environments, 20(7), 915-929.
Chang, Y. S., Lin, H. C., Chien, Y. H., & Yen, W. H. (2018). Effects of creative components and creative behavior on design creativity. Thinking Skills and Creativity, 29, 23-31.
Chávez-Eakle, R. A., Eakle, A. J., & Cruz-Fuentes, C. (2012). The multiple relations between creativity and personality. Creativity Research Journal, 24(1), 76-82.
Chávez-Eakle, R. A., Graff-Guerrero, A., García-Reyna, J. C., Vaugier, V., & Cruz-Fuentes, C. (2007). Cerebral blood flow associated with creative performance: A comparative study. Neuroimage, 38(3), 519-528.
Chen, J. A. (2012). Implicit theories, epistemic beliefs, and science motivation: A person-centered approach. Learning and Individual Differences, 22(6), 724-735.
Chen, J. A., & Pajares, F. (2010). Implicit theories of ability of grade 6 science students: Relation to epistemological beliefs and academic motivation and achievement in science. Contemporary Educational Psychology, 35(1), 75-87.
Chen, W. W., Chen, C. C., Dai, C.L., U, N. M., & Cheng, L. (2018). Is the incremental theory of intelligence a key to students’ motivational engagement? The moderating effects of self-enhancement and self-criticism. Interactive Learning Environments, 26(6), 730-744.
Cheng, K. H., & Tsai, C. C. (2019). A case study of immersive virtual field trips in an elementary classroom: Students’ learning experience and teacher-student interaction behaviors. Computers & Education, 140, 103600.
Cheng, Y. L. (2017). The improvement of spatial ability and its relation to spatial training. In M. S. Khine (Ed.), Visual-spatial ability in STEM education (pp. 143-172). Cham, CH: Springer.
Cheung, G. W., & Wang, C. (2017). Current approaches for assessing convergent and discriminant validity with SEM: Issues and solutions. Academy of Management Proceedings, 2017(1), 12706.
Chittaro, L., Corbett, C. L., McLean, G. A., & Zangrando, N. (2018). Safety knowledge transfer through mobile virtual reality: A study of aviation life preserver donning. Safety Science, 102, 159-168.
Cho, B. H., Ku, J., Jang, D. P., Kim, S., Lee, Y. H., Kim, I. Y., ... & Kim, S. I. (2002). The effect of virtual reality cognitive training for attention enhancement. CyberPsychology & Behavior, 5(2), 129-137.
Cho, J. Y. (2017). An investigation of design studio performance in relation to creativity, spatial ability, and visual cognitive style. Thinking Skills and Creativity, 23, 67-78.
Cho, J. Y., & Suh, J. (2019). Understanding spatial ability in interior design education: 2D‐to‐3D visualization proficiency as a predictor of design performance. Journal of Interior Design, 44(3), 141-159.
Chou, T. J., & Ting, C. C. (2003). The role of flow experience in cyber-game addiction. Cyber Psychology & Behavior, 6(6), 663-675.
Chun, M. M., Golomb, J. D., & Turk-Browne, N. B. (2011). A taxonomy of external and internal attention. Annual Review of Psychology, 62, 73-101.
Clinton, G., & Hokanson, B. (2012). Creativity in the training and practice of instructional designers: The design/creativity loops model. Educational Technology Research and Development, 60(1), 111-130.
Cohen, J. (1988). Statistical power analysis for the behavioral sciences. New York, NY: Routledge Academic.
Coleman, B., Marion, S., Rizzo, A., Turnbull, J., & Nolty, A. (2019). Virtual reality assessment of classroom-related attention: An ecologically relevant approach to evaluating the effectiveness of working memory training. Frontiers in Psychology, 10, 1851.
Collaer, M. L., & Hines, M. (2020). No evidence for enhancement of spatial ability with elevated prenatal androgen exposure in congenital adrenal hyperplasia: A meta-analysis. Archives of Sexual Behavior, 49, 395-411.
Colom, R., Contreras, M. J., Botella, J., & Santacreu, J. (2002). Vehicles of spatial ability. Personality and Individual Differences, 32(5), 903-912.
Cook, D. A., Gas, B. L., Farley, D. R., Lineberry, M., Naik, N. D., Lara, F. J. C., & Artino Jr, A. R. (2019). Influencing mindsets and motivation in procedural skills learning: Two randomized studies. Journal of Surgical Education, 76(3), 652-663.
Cor, M. K. (2016). Trust me, it is valid: Research validity in pharmacy education research. Currents in Pharmacy Teaching and Learning, 8(3), 391-400.
Costa, A., & Faria, L. (2018) Implicit theories of intelligence and academic achievement: A meta‐analytic review, Frontiers in Psychology, 9, 829.
Cowan, N., Elliott, E. M., Saults, J. S., Morey, C. C., Mattox, S., Hismjatullina, A., & Conway, A. R. (2005). On the capacity of attention: Its estimation and its role in working memory and cognitive aptitudes. Cognitive Psychology, 51(1), 42-100.
Coxon, M., Kelly, N., & Page, S. (2016). Individual differences in virtual reality: Are spatial presence and spatial ability linked? Virtual Reality, 20(4), 203-212.
Creswell, J. W. (2009). Research design. Qualitative, quantitative, and mixed method approaches (3rd ed). Thousand Oaks, CA: SAGE.
Croasmun, J. T., & Ostrom, L. (2011). Using Likert-type scales in the social sciences. Journal of Adult Education, 40(1), 19-22.
Crockett, S. A. (2012). A five-step guide to conducting SEM analysis in counseling research. Counseling Outcome Research and Evaluation, 3(1), 30-47.
Crooks, S. M., Cheon, J., Inan, F., Ari, F., & Flores, R. (2012). Modality and cueing in multimedia learning: Examining cognitive and perceptual explanations for the modality effect. Computers in Human Behavior, 28(3), 1063-1071.
Cseh, G. M., Phillips, L. H., & Pearson, D. G. (2015). Flow, affect and visual creativity. Cognition and Emotion, 29(2), 281-291.
Csikszentmihalyi, M. (1975). Beyond boredom and anxiety: Experiencing flow in work and play. San Francisco, CA: Jossey-Bass.
Csikszentmihalyi, M., Abuhamdeh, S., & Nakamura, J. (2005). Flow. In A. J. Elliot & C. S. Dweck (Eds.), Handbook of competence and motivation (pp. 598-608). New York, NY: Guilford Publications, Inc.
Dalgarno, B. (2002). The potential of 3D virtual learning environments: A constructivist analysis. Electronic Journal of Instructional Science and Technology, 5(2), 3-6.
Dalinger, T., Thomas, K. B., Stansberry, S., & Xiu, Y. (2020). A mixed reality simulation offers strategic practice for pre-service teachers. Computers & Education, 144, 103696.
Darvishmotevali, M., Altinay, L., & De Vita, G. (2018). Emotional intelligence and creative performance: Looking through the lens of environmental uncertainty and cultural intelligence. International Journal of Hospitality Management, 73, 44-54.
Davis, J. L., Burnette, J. L., Allison, S. T., & Stone, H. (2011). Against the odds: Academic underdogs benefit from incremental theories. Social Psychology of Education, 14(3), 331-346.
Davison, S. M. C., Deeprose, C., & Terbeck, S. (2018). A comparison of immersive virtual reality with traditional neuropsychological measures in the assessment of executive functions. Acta Neuropsychiatrica, 30(2), 79-89.
Dawoud, H. M., Al-Samarraie, H., & Zaqout, F. (2015). The role of flow experience and CAD tools in facilitating creative behaviours for architecture design students. International Journal of Technology and Design Education, 25(4), 541-561.
de Castella, K., & Byrne, D. (2015). My intelligence may be more malleable than yours: The revised implicit theories of intelligence (self-theory) scale is a better predictor of achievement, motivation, and student disengagement. European Journal of Psychology of Education, 30(3), 245-267.
de Dreu, C. K. W., Baas, M., Nijstad, B. A. (2008). Hedonic tone and activation in the mood-creativity link: Towards a dual pathway to creativity model. Journal of Personality and Social Psychology, 94, 739-756.
de Manzano, Ö., Theorell, T., Harmat, L., & Üllen, F. (2010). The psychophysiology of flow during piano playing. Emotion, 10(3), 301-311.
de Stobbeleir, K. E., Ashford, S. J., & Buyens, D. (2011). Self-regulation of creativity at work: The role of feedback-seeking behavior in creative performance. Academy of Management Journal, 54(4), 811-831.
Denzin, N. K., & Lincoln, Y. S. (2003). Collecting and interpreting qualitative materials. Thousand Oaks, CA: SAGE.
Diaz-Orueta, U., Lizarazu, B., Climent, G., & Banterla, F. (2014). Virtual reality for neuropsychological assessment. In M. Ma, L. C. Jain, & P. Anderson (Eds.), Virtual, augmented reality and serious games for healthcare 1 (pp. 233-255). Berlin, DE: Springer.
Dietrich, A. (2004). Neurocognitive mechanisms underlying the experience of flow. Consciousness and Cognition, 13(4), 746-761.
Diseth, Å., Meland, E., & Breidablik, H. J. (2014). Self-beliefs among students: Grade level and gender differences in self-esteem, self-efficacy and implicit theories of intelligence. Learning and Individual Differences, 35, 1-8.
Doboli, A., Umbarkar, A., Doboli, S., & Betz, J. (2015). Modeling semantic knowledge structures for creative problem solving: Studies on expressing concepts, categories, associations, goals and context. Knowledge-Based Systems, 78, 34-50.
Dominguez, M. G., Martin-Gutierrez, J., Gonzalez, C. R., & Corredeaguas, C. M. M. (2012). Methodologies and tools to improve spatial ability. Procedia-Social and Behavioral Sciences, 51, 736-744.
Dorst, K., & Cross, N. (2001). Creativity in the design process: Co-evolution of problem-solution. Design Studies 22(5), 425-437.
Dumas, D., Schmidt, L. C., & Alexander, P. A. (2016). Predicting creative problem solving in engineering design. Thinking Skills and Creativity, 21, 50-66.
Dupeyrat, C., & Mariné, C. (2005). Implicit theories of intelligence, goal orientation, cognitive engagement, and achievement: A test of Dweck’s model with returning to school adults. Contemporary Educational Psychology, 30(1), 43-59.
Dweck, C. S. (2000). Self-theories: Their role in motivation, personality, and development. Hove, UK: Psychology press.
Dweck, C. S. (2002). Messages that motivate: How praise molds students' beliefs, motivation, and performance (in surprising ways). In J. Aronson (Ed.), Improving academic achievement (pp. 37-60). Cambridge, MA: Academic Press.
Dweck, C. S. (2006). Mindset: The new psychology of success. New York, NY: Random House.
Dweck, C. S. (2012). Implicit theories. In P. M. Van Lange, A. W. Kruglanski, E. T. Higgins, P. M. Van Lange, A. W. Kruglanski & E. T. Higgins (Eds.), Handbook of theories of social psychology (Vol 2, pp. 43-61). Thousand Oaks, CA: Sage Publications Ltd.
Dweck, C. S., & Leggett, E. L. (1988). A social-cognitive approach to motivation and personality. Psychological Review, 95, 256-273.
Dweck, C. S., & Master, A. (2009). Self-theories motivate self-regulated learning. In D. H. Schunk & B. J. Zimmerman (Eds.), Motivation and self-regulated learning: Theory, research, and applications (pp. 31-51). New York, NY: Taylor & Francis.
Dweck, C. S., Chiu, C. Y., & Hong, Y. Y. (1995). Implicit theories and their role in judgments and reactions: A word from two perspectives. Psychological Inquiry, 6(4), 267-285.
Dweck, C. S., Mangels, J. A., & Good, C. (2008). Motivational effects on attention, cognition, and performance. In D. Y. Dai & R. J. Sternberg (Eds.), Motivation, emotion, and cognition: Integrative perspectives on intellectual functioning and development (pp. 41-55). Mahwah, NJ: Lawrence Erlbaum.
Dweck, C. S. (2006). Mindset: The new psychology of success. New York, NY: Random House.
Edwards, B. I., Bielawski, K. S., Prada, R., & Cheok, A. D. (2019). Haptic virtual reality and immersive learning for enhanced organic chemistry instruction. Virtual Reality, 23(4), 363-373.
Efklides, A., Kourkoulou, A., Mitsiou, F., & Ziliaskopoulou, D. (2006). Metacognitive knowledge of effort, personality factors, and mood state: Their relationships with effort-related metacognitive experiences. Metacognition and Learning, 1(1), 33-49.
Ehrlinger, J., Mitchum, A. L., & Dweck, C. S. (2016). Understanding overconfidence: Theories of intelligence, preferential attention, and distorted self-assessment. Journal of Experimental Social Psychology, 63, 94-100.
Eitel, A., Kühl, T., Scheiter, K., & Gerjets, P. (2014). Disfluency meets cognitive load in multimedia learning: Does harder‐to‐read mean better‐to‐understand? Applied Cognitive Psychology, 28(4), 488-501.
Elias, Z. M., Batumalai, U. M., & Azmi, A. N. H. (2019). Virtual reality games on accommodation and convergence. Applied Ergonomics, 81, 102879.
Eliot, J. (2002). About spatial intelligence: I. Perceptual and Motor Skills, 94(2), 479-486.
El-Murad, J., & West, D. C. (2004). The definition and measurement of creativity: What do we know? Journal of Advertising Research, 44(2), 188-201.
Emerson, R. W. (2019). Cronbach’s alpha explained. Journal of Visual Impairment & Blindness, 113(3), 327-327.
Engeser, S. E. (2012). Advances in flow research. New York, NY: Springer Science+ Business Media.
Engeser, S., & Rheinberg, F. (2008). Flow, performance and moderators of challenge-skill balance. Motivation and Emotion, 32, 158-172.
Erhel, S., & Jamet, E. (2019). Improving instructions in educational computer games: Exploring the relations between goal specificity, flow experience and learning outcomes. Computers in Human Behavior, 91, 106-114.
Evermann, J., & Tate, M. (2016). Assessing the predictive performance of structural equation model estimators. Journal of Business Research, 69(10), 4565-4582.
Faria, L., & Fontaine, A. M. (1997). Adolescents’ personal conceptions of intelligence: The development of a new scale and some exploratory evidence. European Journal of Psychology of Education, 12(1), 51-62.
Farran, E. K., & Karmiloff-Smith, A. (Eds.). (2012). Neurodevelopmental disorders across the lifespan: A neuroconstructivist approach. Oxford, UK: Oxford University Press.
Farrell, A. M. (2010). Insufficient discriminant validity: A comment on Bove, Pervan, Beatty, and Shiu (2009). Journal of Business Research, 63(3), 324-327.
Farrow, M., Lutteroth, C., Rouse, P. C., & Bilzon, J. L. (2019). Virtual-reality exergaming improves performance during high-intensity interval training. European Journal of Sport Science, 19(6), 719-727.
Farshid, M., Paschen, J., Eriksson, T., & Kietzmann, J. (2018). Go boldly! Explore augmented reality (AR), virtual reality (VR), and mixed reality (MR) for business. Business Horizons, 61(5), 657-663.
Fealy, S., Jones, D., Hutton, A., Graham, K., McNeill, L., Sweet, L., & Hazelton, M. (2019). The integration of immersive virtual reality in tertiary nursing and midwifery education: A scoping review. Nurse Education Today, 79, 14-19.
Feldman, H., & Friston, K. (2010). Attention, uncertainty, and free-energy. Frontiers in Human Nneuroscience, 4, 215.
Ferguson, A. M., Maloney, E. A., Fugelsang, J., & Risko, E. F. (2015). On the relation between math and spatial ability: The case of math anxiety. Learning and Individual Differences, 39, 1-12.
Fırat, M., Kılınç, H., & Yüzer, T. V. (2018). Level of intrinsic motivation of distance education students in e‐learning environments. Journal of Computer Assisted Learning, 34(1), 63-70.
Fullagar, C. J., & Kelloway, E. K. (2009). Flow at work: An experience sampling approach. Journal of Occupational and Organizational Psychology, 82(3), 595-615.
Furnham, A. (2008). Personality and intelligence at work: Exploring and explaining individual differences at work. Abingdon-on-Thames, UK: Routledge.
Furnham, A., & Bachtiar, V. (2008). Personality and intelligence as predictors of creativity. Personality and Individual Differences, 45(7), 613-617.
Furnham, A., Chamorro-Premuzic, T., & McDougall, F. (2003). Personality, cognitive ability, and beliefs about intelligence as predictors of academic performance. Learning and individual Differences, 14(1), 47-64.
Fuster, J. M. (2004). Upper processing stages of the perception-action cycle. Trends in Cognitive Sciences, 8(4), 143-145.
Gabriel, A., Monticolo, D., Camargo, M., & Bourgault, M. (2016). Creativity support systems: A systematic mapping study. Thinking Skills and Creativity, 21, 109-122.
Gaggioli, A., Mazzoni, E., Milani, L., & Riva, G. (2015). The creative link: Investigating the relationship between social network indices, creative performance and flow in blended teams. Computers in Human Behavior, 42, 157-166.
Galanter, P. (2012). Computational aesthetic evaluation: Past and future. In J. McCormack & M. d’Inverno (Eds.), Computers and Creativity (pp. 255-293). Berlin, DE: Springer.
Gallagher, M. W., & Brown, T. A. (2013) Introduction to confirmatory factor analysis and structural equation modeling. In T. Teo (Ed.), Handbook of quantitative methods for educational research (pp. 289-314). Rotterdam, NL: SensePublishers.
Gao, L., Waechter, K. A., & Bai, X. (2015). Understanding consumers’ continuance intention towards mobile purchase: A theoretical framework and empirical study - A case of China. Computers in Human Behavior, 53, 249-262.
GarCía-Cepero, M. C., & McCoach, D. B. (2009). Educators' implicit theories of intelligence and beliefs about the identification of gifted students. Universitas Psychologica, 8(2), 295-310.
Gatignon, H. (2010). Statistical analysis of management data. New York, NY: Springer.
Good, C., Aronson, J., & Harder, J. A. (2008). Problems in the pipeline: Stereotype threat and woman’s achievement in high-level math courses. Journal of Applied Developmental Psychology, 29, 17-28.
Good, C., Rattan, A., & Dweck, C. S. (2012). Why do women opt out? Sense of belonging and women’s representation in mathematics. Journal of Personality and Social Psychology, 102(4), 700-717.
Goodwin, C., & Mucha, R. (2010). Aesthetic intelligence: What business can learn from the arts. Rotman Magazine, Spring, 53-57.
Gorbet, D. J., & Sergio, L. E. (2019). Looking up while reaching out: The neural correlates of making eye and arm movements in different spatial planes. Experimental Brain Research, 237(1), 57-70.
Gottlieb, J. (2012). Attention, learning, and the value of information. Neuron, 76(2), 281-295.
Green, S. B., & Salkind, N. (2004). Using SPSS for Windows and Macintosh: Analyzing and understanding data (4th ed.). Englewood Cliffs, NJ: Prentice-Hall.
Greene, J. A., Torney‐Purta, J., & Azevedo, R. (2010). Empirical evidence regarding relations among a model of epistemic and ontological cognition, academic performance, and educational level. Journal of Educational Psychology, 102(1), 234-255.
Grieve, R., Kemp, N., Norris, K., & Padgett, C. R. (2017). Push or pull? Unpacking the social compensation hypothesis of Internet use in an educational context. Computers & Education, 109, 1-10.
Guilford, J. P. (1967). Creativity: Yesterday, today and tomorrow. Journal of Creative Behavior, 1(1), 3-14.
Guo, Y. M., Klein, B. D., & Ro, Y. K. (2020). On the effects of student interest, self-efficacy, and perceptions of the instructor on flow, satisfaction, and learning outcomes. Studies in Higher Education, 45(7), 1413-1430.
Hafiz, B., & Shaari, J. A. N. (2013). Confirmatory factor analysis (CFA) of first order factor measurement model-ICT empowerment in Nigeria. International Journal of Business Management and Administration, 2(5), 81-88.
Hagita, K., Kodama, Y., & Takada, M. (2020). Simplified virtual reality training system for radiation shielding and measurement in nuclear engineering. Progress in Nuclear Energy, 118, 103127.
Haimovitz, K., Wormington, S. V., & Corpus, J. H. (2011). Dangerous mindsets: How beliefs about intelligence predict motivational change. Learning and Individual Differences, 21(6), 747-752.
Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2010). Multivariate data analysis (7th ed.). Upper Saddle River, NJ: Pearson Prentice Hall.
Hair, J. F., Hult, T. M., Ringle, C. M., & Sarstedt, M. (2014). A primer on partial least squares structural equation modeling (PLS-SEM). Los Angeles, CA: SAGE.
Hair, J. F., Ringle, C M., & Sarstedt, M. (2011). PLS-SEM: Indeed a silver bullet. Journal of Marketing Theory and Practice, 19(2), 139-152.
Halpern, D. F., & Collaer, M. L. (2005). Sex differences in visuospatial abilities: More than meets the eye. In P. Shah & A. Miyake (Eds.), The Cambridge handbook of visuospatial thinking (pp. 170-212). New York, NY: Cambridge University Press.
Hamza, T. S., & Hassan, D. K. (2016). Consequential creativity. International Journal of Technology and Design Education, 26(4), 587-612.
Han, K. H., & Kim, J. (2017). Utility of advertising for creativity education: An experimental study targeting school children. International Journal of Advertising, 36(3), 439-456.
Hannafin, R. D., Truxaw, M. P., Vermillion, J. R., & Liu, Y. (2008). Effects of spatial ability and instructional program on geometry achievement. The Journal of Educational Research, 101(3), 148-157.
Harmat, L., de Manzano, Ö., Theorell, T., Högman, L., Fischer, H., & Ullén, F. (2015). Physiological correlates of the flow experience during computer game playing. International Journal of Psychophysiology, 97(1), 1-7.
Harris, D. J., Vine, S. J., & Wilson, M. R. (2017). Is flow really effortless? The complex role of effortful attention. Sport, Exercise, and Performance Psychology, 6(1), 103-114.
Hegarty, M. (2018). Ability and sex differences in spatial thinking: What does the mental rotation test really measure? Psychonomic Bulletin & Review, 25(3), 1212-1219.
Hegarty, M., & Waller, D. (2005). Individual differences in spatial abilities. In P. Shah & A. Miyake (Eds.), The Cambridge handbook of visuospatial thinking (pp. 121-169). Cambridge, UK: Cambridge University Press.
Hegarty, M., Montello, D. R., Richardson, A. E., Ishikawa, T., & Lovelace, K. (2006). Spatial abilities at different scales: Individual differences in aptitude-test performance and spatial-layout learning. Intelligence, 34(2), 151-176.
Heinze, T. (2013). Creative accomplishments in science: Definition, theoretical considerations, examples from science history, and bibliometric findings. Scientometrics, 95(3), 927-940.
Henn, P., Gallagher, A. G., Nugent, E., Seymour, N. E., Haluck, R. S., Hseino, H., ... & Neary, P. C. (2018). Visual spatial ability for surgical trainees: Implications for learning endoscopic, laparoscopic surgery and other image-guided procedures. Surgical Endoscopy, 32(8), 3634-3639.
Hennessey, B. A. Amabile, T. M., & Mueller, J. M. (2011). Consensual assessment. In M. A. Runco & S. R. Pritzker (Eds.), Encyclopedia of creativity (1 nd ed., pp. 253-260), Oxford, UK: Elsevier.
Henrie, C. R., Halverson, L. R., & Graham, C. R. (2015). Measuring student engagement in technology-mediated learning: A review. Computers & Education, 90, 36-53.
Henseler, J., Ringle, C. M., & Sarstedt, M. (2015). A new criterion for assessing discriminant validity in variance-based structural equation modeling. Journal of the Academy of Marketing Science, 43(1), 115-135.
Hew, K. F., Lan, M., Tang, Y., Jia, C., & Lo, C. K. (2019). Where is the “theory” within the field of educational technology research? British Journal of Educational Technology, 50(3), 956-971.
Hodgson, C., Needham, D., Haines, K., Bailey, M., Ward, A., Harrold, M., ... & Presneill, J. (2014). Feasibility and inter-rater reliability of the ICU mobility scale. Heart & Lung: The Journal of Acute and Critical Care, 43(1), 19-24.
Höffler, T. N. (2010). Spatial ability: Its influence on learning with visualizations-A meta-analytic review. Educational Psychology Review, 22(3), 245-269.
Höffler, T. N., & Leutner, D. (2011). The role of spatial ability in learning from instructional animations-evidence for an ability-as-compensator hypothesis. Computers in Human Behavior, 27(1), 209-216.
Hofmann, S. G., Asnaani, A., Vonk, I. J., Sawyer, A. T., & Fang, A. (2012). The efficacy of cognitive behavioral therapy: A review of meta-analyses. Cognitive Therapy and Research, 36(5), 427-440.
Hong, J. C., Hwang, M. Y., Tai, K. H., & Tsai, C. R. (2018, December). Training spatial ability through virtual reality. In M J. W. Lee, S. Nikolic, M. Ros, J. Shen, L. C. U. Lei, G. K. W. Wong, & N. Venkatarayalu (Eds.), Proceedings of 2018 IEEE international conference on teaching, assessment, and learning for engineering (pp. 1204-1205). Wollongong, NSW: IEEE.
Hong, J. C., Hwang, M. Y., Tai, K. H., Kuo, Y. C., & Lin, P. C. (2017). Confusion affects gameplay. Learning and Individual Differences, 59, 119-126.
Hong, J. C., Hwang, M. Y., Tai, K. S., Lin, P. S., & Lin, P. C. (in press). Learning progress in a Chinese order of stroke game: The effects of intrinsic cognitive load and gameplay interest mediated by flow experience. Journal of Educational Computing Research. Retrieved from https://doi.org/10.1080/09588221.2019.1614068
Hong, J. C., Tai, K. H., & Ye, J. H. (2019). Playing a Chinese remote associated game: The correlation among flow, self-efficacy, collective self-esteem, and competitive anxiety. British Journal of Educational Technology, 50(5), 2720-2735.
Hong, J. C., Tai, K. H., Hwang, M. Y., & Kuo, Y. C. (2016). Internet cognitive failure affects learning progress as mediated by cognitive anxiety and flow while playing a Chinese antonym synonym game with interacting verbal-analytical and motor-control. Computers & Education, 100, 32-44.
Hong, J. C., Tsai, C. R., Hsiao, H. S., Chen, P. H., Chu, K. C., Gu, J., & Sitthiworachart, J. (2019). The effect of the “Prediction-observation-quiz-explanation” inquiry-based e-learning model on flow experience in green energy learning. Computers & Education, 133, 127-138.
Hong, J. C., Ye, J. H, & Fan, J. Y. (2019). STEM in Fashion Design: The roles of creative self-efficacy and epistemic curiosity in creative performance. EURASIA Journal of Mathematics, Science and Technology Education, 15(9), em1742.
Hong, Y., Chiu, C., Dweck, C. S., Lin, D. M. S., & Wan, W. (1999). Implicit theories, attributions and coping: A meaning system approach. Journal of Personality and Social Psychology, 77, 588-599.
Howard, T. J., Culley, S. J., & Dekoninck, E. (2008). Describing the creative design process by the integration of engineering design and cognitive psychology literature. Design Studies, 29(2), 160-180.
Hoyle, R. H. (2000). Confirmatory factor analysis. In H. E. A. Tinsley & S. D. Brown (Eds.), Handbook of applied multivariate statistics and mathematical modeling (pp. 465-497). Cambridge, MA: Academic Press.
Hsu, C. L., Chang, K. C., & Chen, M. C. (2012). Flow experience and internet shopping behavior: Investigating the moderating effect of consumer characteristics. Systems Research and Behavioral Science, 29(3), 317-332.
Hsu, T. C. (2017). Learning English with augmented reality: Do learning styles matter? Computers & Education, 106, 137-149.
Hu, W., Wang, X., Yi, L. Y. X., & Runco, M. A. (2018). Creative self-efficacy as moderator of the influence of evaluation on artistic creativity. The International Journal of Creativity & Problem Solving, 28(2), 39-55.
Huang, C. L., Luo, Y. F., Yang, S. C., Lu, C. M., & Chen, A. S. (in press). Influence of students’ learning style, sense of presence, and cognitive load on learning outcomes in an immersive virtual reality learning environment. Journal of Educational Computing Research. Retrieved from https://doi.org/10.1177/0735633119867422
Huang, H. M., Rauch, U., & Liaw, S. S. (2010). Investigating learners’ attitudes toward virtual reality learning environments: Based on a constructivist approach. Computers & Education, 55(3), 1171-1182.
Huang, N., Zuo, S., Wang, F., Cai, P., & Wang, F. (2017). The dark side of malleability: Incremental theory promotes immoral behaviors. Frontiers in Psychology, 8, 1341.
Huang, Y. Y., Menozzi, M., & Favey, C. (2019). A screening tool for occupations requiring a high level of attentional performance. International Journal of Industrial Ergonomics, 72, 86-92.
Hudson, S., Matson-Barkat, S., Pallamin, N., & Jégou, G. (2019). With or without you? Interaction and immersion in a virtual reality experience. Journal of Business Research, 100, 459-468.
Huk, T. (2006). Who benefits from learning with 3D models? The case of spatial ability. Journal of Computer Assisted Learning, 22(6), 392-404.
Hung, C., Sun, J. C., & Yu, P. (2015). The benefits of a challenge: Student motivation and flow experience in tablet-PC-game-based learning. Interactive Learning Environments, 23(2), 172-190.
Hwang, W. Y., Wang, C. Y., & Sharples, M. (2007). A study of multimedia annotation of Web-based materials. Computers & Education, 48(4), 680-699.
Intasao, N., & Hao, N. (2018). Beliefs about creativity influence creative performance: The mediation effects of flexibility and positive affect. Frontiers in Psychology, 9, 1810.
Jabbar, Q., Ansari, I., Shah, A., & Shah, A. A. (2017). A 28-year-old man with lack of concentration and inability to focus. Psychiatric Annals, 47(6), 285-286.
Jagtap, S., Larsson, A., Hiort, V., Olander, E., & Warell, A. (2015). Interdependency between average novelty, individual average novelty, and variety. International Journal of Design Creativity and Innovation, 3(1), 43-60.
Jauk, E., Benedek, M., Dunst, B., & Neubauer, A. C. (2013). The relationship between intelligence and creativity: New support for the threshold hypothesis by means of empirical breakpoint detection. Intelligence, 41(4), 212-221.
Jensen, L., & Konradsen, F. (2018). A review of the use of virtual reality head-mounted displays in education and training. Education and Information Technologies, 23(4), 1515-1529.
Joda, T., Gallucci, G. O., Wismeijer, D., & Zitzmann, N. U. (2019). Augmented and virtual reality in dental medicine: A systematic review. Computers in Biology and Medicine, 108, 93-100.
Johnson, C. I., & Mayer, R. E. (2009). A testing effect with multimedia learning. Journal of Educational Psychology, 101(3), 621-629.
Johnson-Glenberg, M. C. (2018). Immersive VR and education: Embodied design principles that include gesture and hand controls. Frontiers in Robotics and AI, 5, 81.
Jung, J. H., & Chang, D. R. (2017). Types of creativity - Fostering multiple intelligences in design convergence talents. Thinking Skills and Creativity, 23, 101-111.
Junker, N. M., & van Dick, R. (2014). Implicit theories in organizational settings: A systematic review and research agenda of implicit leadership and followership theories. The Leadership Quarterly, 25(6), 1154-1173.
Kandalaft, M. R., Didehbani, N., Krawczyk, D. C., Allen, T. T., & Chapman, S. B. (2013). Virtual reality social cognition training for young adults with high-functioning autism. Journal of Autism and Developmental Disorders, 43(1), 34-44.
Kao, C Y. (2019). How combining opposite, near-opposite, and irrelevant concepts influence creativity performance. Psychology of Aesthetics, Creativity, and the Arts, 13(1), 24-35.
Kardong-Edgren, S. S., Farra, S. L., Alinier, G., & Young, H. M. (2019). A call to unify definitions of virtual reality. Clinical Simulation in Nursing, 31, 28-34.
Kassim, H., Nicholas, H., & Ng, W. (2014). Using a multimedia learning tool to improve creative performance. Thinking Skills and Creativity, 13, 9-19.
Kaufman, J. C., Pumaccahua, T. T., & Holt, R. E. (2013). Personality and creativity in realistic, investigative, artistic, social, and enterprising college majors. Personality and Individual Differences, 54(8), 913-917.
Kaufman, S. B. (2007). Sex differences in mental rotation and spatial visualization ability: Can they be accounted for by differences in working memory capacity? Intelligence, 35(3), 211-223.
Kaur, P., Dhir, A., Chen, S., & Rajala, R. (2016). Flow in context: Development and validation of the flow experience instrument for social networking. Computers in Human Behavior, 59, 358-367.
Kazakci, A. O., Gillier, T., Piat, G., & Hatchuel, A. (2015). Brainstorming vs. creative design reasoning: A theory-driven experimental investigation of novelty, feasibility and value of ideas. In J. S. Gero & S. Hanna (Eds.), Design computing and cognition'14 (pp. 173-188). Cham, CH: Springer.
Keehner, M. M., Tendick, F., Meng, M. V., Anwar, H. P., Hegarty, M., Stoller, M. L., & Duh, Q. Y. (2004). Spatial ability, experience, and skill in laparoscopic surgery. The American Journal of Surgery, 188(1), 71-75.
Kell, H. J., Lubinski, D., Benbow, C. P., & Steiger, J. H. (2013). Creativity and technical innovation: Spatial ability’s unique role. Psychological Science, 24(9), 1831-1836.
Kennett, D. J., & Keefer, K. (2006). Impact of learned resourcefulness and theories of intelligence on academic achievement of university students: An integrated approach. Educational Psychology, 26(3), 441-457.
Kenny, D. A., Kaniskan, B., & McCoach, D. B. (2015). The performance of RMSEA in models with small degrees of freedom. Sociological Methods & Research, 44(3), 486-507.
Khine, M. S. (2017). Visual-spatial ability in STEM education. Cham, CH: Springer.
Kim, N. Y., House, R., Yun, M. H., & Nam, C. S. (2019). Neural correlates of workload transition in Multitasking: An ACT-R model of hysteresis effect. Frontiers in Human Neuroscience, 12, 535.
Kimura, D. (2000). Sex and cognition. Cambridge, MA: MIT Press.
King, R. B. (2012). How you think about your intelligence influences how adjusted you are: Implicit theories and adjustment outcomes. Personality and Individual Differences, 53(5), 705-709.
King, R. B., McInerney, D. M., & Watkins, D. A. (2012). How you think about your intelligence determines how you feel in school: The role of theories of intelligence on academic emotions. Learning and Individual Differences, 22(6), 814-819.
Klasen, M., Weber, R., Kircher, T. T., Mathiak, K. A., & Mathiak, K. (2012). Neural contributions to flow experience during video game playing. Social Cognitive and Affective Neuroscience, 7(4), 485-495.
Klebba, J. M., & Tierney, P. (1995). Advertising creativity: A review and empirical investigation of external evaluation, cognitive style and self-perceptions of creativity. Journal of Current Issues & Research in Advertising, 17(2), 33-52.
Klimesch, W. (2012). Alpha-band oscillations, attention, and controlled access to stored information. Trends in Cognitive Sciences, 16(12), 606-617.
Klippel, A., Zhao, J., Jackson, K. L., La Femina, P., Stubbs, C., Wetzel, R., ... & Oprean, D. (in press). Transforming earth science education through immersive experiences: Delivering on a long held promise. Journal of Educational Computing Research. Retrieved from https://doi.org/10.1177/0735633119854025
Koufaris, M. (2002). Applying the technology acceptance model and flow theory to online consumer behavior. Information Systems Research, 13(2), 205-223.
Kray, L. J., & Haselhuhn, M. P. (2007). Implicit negotiation beliefs and performance: Experimental and longitudinal evidence. Journal of Personality and Social Psychology, 93(1), 49-64.
Kuliga, S. F., Thrash, T., Dalton, R. C., & Hölscher, C. (2015). Virtual reality as an empirical research tool-Exploring user experience in a real building and a corresponding virtual model. Computers, Environment and Urban Systems, 54, 363-375.
Kwok, P. K., Yan, M., Chan, B. K., & Lau, H. Y. (2019). Crisis management training using discrete-event simulation and virtual reality techniques. Computers & Industrial Engineering, 135, 711-722.
Kyaw, B. M., Saxena, N., Posadzki, P., Vseteckova, J., Nikolaou, C. K., George, P. P., ... & Car, L. T. (2019). Virtual reality for health professions education: Systematic review and meta-analysis by the digital health education collaboration. Journal of Medical Internet Research, 21(1), e12959.
Lakens, D. (2013). Calculating and reporting effect sizes to facilitate cumulative science: A practical primer for t-tests and ANOVAs. Frontiers in Psychology, 4, 863.
Lalonde, G., Henry, M., Drouin-Germain, A., Nolin, P., & Beauchamp, M. H. (2013). Assessment of executive function in adolescence: A comparison of traditional and virtual reality tools. Journal of Neuroscience Methods, 219(1), 76-82.
Lamb, R. L., Annetta, L., Firestone, J., & Etopio, E. (2018). A meta-analysis with examination of moderators of student cognition, affect, and learning outcomes while using serious educational games, serious games, and simulations. Computers in Human Behavior, 80, 158-167.
Landa, R. (2001). Graphic design solutions. South Africa, ZA: On-Word Press.
Lang, S. Y., Dickinson, J., & Buchal, R. O. (2002). Cognitive factors in distributed design. Computers in Industry, 48(1), 89-98.
Lawton, C. A. (2010) Gender, spatial abilities, and wayfinding. In J. Chrisler & D. McCreary (Eds), Handbook of gender research in psychology (pp. 317-341). New York, NY: Springer.
Lawton, C. A., & Kallai, J. (2002). Gender differences in wayfinding strategies and anxiety about wayfinding: A cross-cultural comparison. Sex Roles, 47(9/10), 389-401.
Lee, C., & Wong, G. K. C. (2019). Virtual reality and augmented reality in the management of intracranial tumors: A review. Journal of Clinical Neuroscience, 62, 14-20.
Lee, E. A. L., & Wong, K. W. (2014). Learning with desktop virtual reality: Low spatial ability learners are more positively affected. Computers & Education, 79, 49-58.
Lee, M. C. (2010). Explaining and predicting users’ continuance intention toward e-learning: An extension of the expectation-confirmation model. Computers & Education, 54(2), 506-516.
Lee, Y. K., & Seo, E. (2019). Trajectories of implicit theories and their relations to scholastic aptitude: A mediational role of achievement goals. Contemporary Educational Psychology, 59, 101800.
Lehmann, A., & Schönwiesner, M. (2014). Selective attention modulates human auditory brainstem responses: Relative contributions of frequency and spatial cues. PloS One, 9(1), e85442.
Lengenfelder, J., Schultheis, M. T., Al-Shihabi, T., Mourant, R., & DeLuca, J. (2002). Divided attention and driving: A pilot study using virtual reality technology. The Journal of Head Trauma Rehabilitation, 17(1), 26-37.
Leontieva, L., Golovko, S., Adhlakha, A., Polinkovsky, L., & Harris, C. (2017). Attention, concentration and planning ability improvement in response to depression treatment during acute psychiatric hospitalization. Clin Depress, 3(2), 1000123.
Leung, L. (2020). Exploring the relationship between smartphone activities, flow experience, and boredom in free time. Computers in Human Behavior, 103, 130-139.
Lin, C. H., & Chen, C. M. (2016). Developing spatial visualization and mental rotation with a digital puzzle game at primary school level. Computers in Human Behavior, 57, 23-30.
Lin, H. (2016). Influence of design training and spatial solution strategies on spatial ability performance. International Journal of Technology and Design Education, 26(1), 123-131.
Lin, J., Lin, S., Turel, O., & Xu, F. (2020). The buffering effect of flow experience on the relationship between overload and social media users’ discontinuance intentions. Telematics and Informatics, 49, 101374.
Linacre, J. M. (2002). Optimizing rating scale category effectiveness. Journal of Applied Measurement, 3(1), 85-106.
Liu, A. M., Oman, C. M., Galvan, R., & Natapoff, A. (2013). Predicting space telerobotic operator training performance from human spatial ability assessment. Acta Astronautica, 92(1), 38-47.
Liu, C. H., Chiu, F. C., Chen, H. C., & Lin, C. Y. (2014). Helpful but insufficient: Incremental theory on challenge-confronting tendencies for students who fear being laughed at. Motivation and Emotion, 38(3), 367-377.
Liu, S. H., Liao, H. L., & Pratt, J. A. (2009). Impact of media richness and flow on e-learning technology acceptance. Computers & Education, 52(3), 599-607.
Lohman, D. F., Pellegrino, J. W., Alderton, D. L., & Regian, J. W. (1987). Dimensions and components of individual differences in spatial abilities. In S. H. Irvine & S. E. Newstead (Eds.), Intelligence and cognition: Contemporary frames of reference (pp. 253-312). Leiden, NL: Martinus Nijhoff Publishing.
Lou, N. M., & Noels, K. A. (2020). Breaking the vicious cycle of language anxiety: Growth language mindsets improve lower-competence ESL students’ social experiences. Contemporary Educational Psychology, 61, 101847.
Lou, N. M., Masuda, T., & Li, L. M. W. (2017). Decremental mindsets and prevention-focused motivation: An extended framework of implicit theories of intelligence. Learning and Individual Differences, 59, 96-106.
Lowrie, T., Logan, T., & Ramful, A. (2017). Visuospatial training improves elementary students’ mathematics performance. British Journal of Educational Psychology, 87(2), 170-186.
Lu, C. C. (2015). The relationship between student design cognition types and creative design outcomes. Design Studies, 36, 59-76.
Lüftenegger, M., Bardach, L., Bergsmann, E., Schober, B., & Spiel, C. (2019). A citizen science approach to measuring students’ achievement goals. International Journal of Educational Research, 95, 36-51.
MacDonald, A. S. (2001). Aesthetic intelligence: Optimizing user-centred design. Journal of Engineering Design, 12(1), 37-45.
MacDonald, R., Byrne, C., & Carlton, L. (2006). Creativity and flow in musical composition: An empirical investigation. Psychology of Music, 34(3), 292-306.
Mainemelis, C., Kark, R., & Epitropaki, O. (2015). Creative leadership: A multi-context conceptualization. Academy of Management Annals, 9(1), 393-482.
Makransky, G., & Petersen, G. B. (2019). Investigating the process of learning with desktop virtual reality: A structural equation modeling approach. Computers & Education, 134, 15-30.
Makransky, G., Terkildsen, T. S., & Mayer, R. E. (2019). Adding immersive virtual reality to a science lab simulation causes more presence but less learning. Learning and Instruction, 60, 225-236.
Maksum, A. (2011). Sports psychology theory and applications. Surabaya, ID: Unesa University Press.
Mangels, J. A., Butterfield, B., Lamb, J., Good, C., & Dweck, C. S. (2006). Why do beliefs about intelligence influence learning success? A social cognitive neuroscience model. Social Cognitive and Affective Neuroscience, 1(2), 75-86.
Martin, A. J., & Jackson, S. A. (2008). Brief approaches to assessing task absorption and enhanced subjective experience: Examining ‘short’and ‘core’flow in diverse performance domains. Motivation and Emotion, 32(3), 141-157.
Martin, A. J., Bostwick K., Collie R. J., & Tarbetsky, A. L. (2016). Implicit theories of intelligence. In V. Zeigler-Hill & T. Shackelford (Eds.), Encyclopedia of personality and individual differences (pp. 1-7). New York, NY: Springer.
Martín-Gutiérrez, J., Mora, C. E., Añorbe-Díaz, B., & González-Marrero, A. (2017). Virtual technologies trends in education. EURASIA Journal of Mathematics Science and Technology Education, 13(2), 469-486.
Mascret, N., Roussel, P., & Cury, F. (2015). Using implicit measures to highlight science teachers’ implicit theories of intelligence. European Journal of Psychology of Education, 30(3), 269-280.
McCrum-Gardner, E. (2008). Which is the correct statistical test to use? British Journal of Oral and Maxillofacial Surgery, 46(1), 38-41.
McDowd, J. M. (2007). An overview of attention: behavior and brain. Journal of Neurologic Physical Therapy, 31(3), 98-103.
Medler, B. (2011). Player dossiers: Analyzing gameplay data as a reward. Game Studies, 11(1). Retrieved from http://gamestudies.org/1101/articles/medler
Merchant, Z., Goetz, E. T., Cifuentes, L., Keeney-Kennicutt, W., & Davis, T. J. (2014). Effectiveness of virtual reality-based instruction on students' learning outcomes in K-12 and higher education: A meta-analysis. Computers & Education, 70, 29-40.
Meyer, O. A., Omdahl, M. K., & Makransky, G. (2019). Investigating the effect of pre-training when learning through immersive virtual reality and video: A media and methods experiment. Computers & Education, 140, 103603.
Mikropoulos, T. A. (2006). Presence: A unique characteristic in educational virtual environments. Virtual Reality, 10(3-4), 197-206.
Millward, L. J., & Freeman, H. (2002). Role expectations as constraints to innovation: The case of female managers. Creativity Research Journal, 14(1), 93‐109.
Miron-Spektor, E., & Beenen, G. (2015). Motivating creativity: The effects of sequential and simultaneous learning and performance achievement goals on product novelty and usefulness. Organizational Behavior and Human Decision Processes, 127, 53-65.
Mitolo, M., Gardini, S., Caffarra, P., Ronconi, L., Venneri, A., & Pazzaglia, F. (2015). Relationship between spatial ability, visuospatial working memory and self-assessed spatial orientation ability: A study in older adults. Cognitive Processing, 16(2), 165-176.
Molden, D. C., & Dweck, C. S. (2006). Finding “meaning” in psychology: A lay theories approach to self‐regulation, social perception, and social development. The American Psychologist, 61, 192-203.
Molina, A. I., Navarro, Ó., Ortega, M., & Lacruz, M. (2018). Evaluating multimedia learning materials in primary education using eye tracking. Computer Standards & Interfaces, 59, 45-60.
Molina-Carmona, R., Pertegal-Felices, M., Jimeno-Morenilla, A., & Mora-Mora, H. (2018). Assessing the impact of virtual reality on engineering students’ spatial ability. In A. Visvizi, M. Lytras, & L. Daniela (Ed.) The future of innovation and technology in education: Policies and practices for teaching and learning excellence (Emerald studies in higher education, innovation and technology) (pp. 171-185). Bingley, UK: Emerald Publishing Limited.
Mollajegh, R. R., Afshari, A., & Kojanagh, H. V. (2017). Comparison of cognitive performance (attention function, active memory and problem solving) between male and female students. An International Peer Reviewed Open Access Journal for Rapid Publication, 1, 243-248.
Montagna, B., Pestilli, F., & Carrasco, M. (2009). Attention trades off spatial acuity. Vision Research, 49(7), 735-745.
Mooshagian, E., Wang, C., Ferdoash, A., & Snyder, L. H. (2014). Movement order and saccade direction affect a common measure of eye-hand coordination in bimanual reaching. Journal of Neurophysiology, 112(3), 730-739.
Morel, M., Bideau, B., Lardy, J., & Kulpa, R. (2015). Advantages and limitations of virtual reality for balance assessment and rehabilitation. Neurophysiologie Clinique/Clinical Neurophysiology, 45(4-5), 315-326.
Morey, R. D., Hoekstra, R., Rouder, J. N., Lee, M. D., & Wagenmakers, E. J. (2016). The fallacy of placing confidence in confidence intervals. Psychonomic Bulletin & Review, 23(1), 103-123.
Mujber, T. S., Szecsi, T., & Hashmi, M. S. (2004). Virtual reality applications in manufacturing process simulation. Journal of Materials Processing Technology, 155, 1834-1838.
Muñoz‐Doyague, M. F., & Nieto, M. (2012). Individual creativity performance and the quality of interpersonal relationships. Industrial Management & Data Systems, 112(1), 125-145.
Münzer, S. (2015). Facilitating recognition of spatial structures through animation and the role of mental rotation ability. Learning and Individual Differences, 38, 76-82.
Murphy, M. C., & Dweck, C. S. (2016). Mindsets shape consumer behavior. Journal of Consumer Psychology, 26(1), 127-136.
Naghavi, H. R., & Nyberg, L. (2005). Common fronto-parietal activity in attention, memory, and consciousness: Shared demands on integration? Consciousness and Cognition, 14(2), 390-425.
Nakagawa, S, & Cuthill, I. C. (2007). Effect size, confidence interval and statistical significance: A practical guide for biologists. Biological Reviews, 82(4), 591-605.
Nakamura, J., & Csikszentmihalyi, M. (2002). The concept of flow. In C. R. Snyder & S. J. Lopez (Eds.), Handbook of positive psychology (pp. 89-105). Oxford, UK: Oxford University Press.
Nakamura, J., & Csikszentmihalyi, M. (2014). The concept of flow. In M. Csikszentmihalyi (Ed.), Flow and the foundations of positive psychology (pp. 239-263). Dordrecht, DE: Springer.
Nazidizaji, S., Tomé, A., & Regateiro, F. (2015). Does the smartest designer design better? Effect of intelligence quotient on students’ design skills in architectural design studio. Frontiers of Architectural Research, 4(4), 318-329.
Nisbett, R. E., Peng, K., Choi, I., & Norenzayan, A. (2001). Culture and systems of thought: Holistic versus analytic cognition. Psychological Review, 108(2), 291-310.
North, M. M., & North, S. M. (2019). Dynamic immersive visualisation environments: Enhancing pedagogical techniques. Australasian Journal of Information Systems, 23, 1-17.
Obadă, D. R. (2013). Flow theory and online marketing outcomes: A critical literature review. Procedia Economics and Finance, 6, 550-561.
OECD (2010). Are the new millennium learners making the grade? Technology use and educational performance in PISA 2006. Paris, FR: OECD Publishing.
Pak, Rogers, & Fisk, (2006). Spatial ability subfactors and their influences on a computer-based information search task. Human Factors, 48(1), 154-165.
Park, B., Flowerday, T., & Brünken, R. (2015). Cognitive and affective effects of seductive details in multimedia learning. Computers in Human Behavior, 44, 267-278.
Park, B., Münzer, S., Seufert, T., & Brünken, R. (2016). The role of spatial ability when fostering mental animation in multimedia learning: An ATI-study. Computers in Human Behavior, 64, 497-506.
Park, B., Plass, J. L., & Brünken, R. (2014). Cognitive and affective processes in multimedia learning. Learning and Instruction, 29, 125-127.
Parong, J., & Mayer, R. E. (2018). Learning science in immersive virtual reality. Journal of Educational Psychology, 110(6), 785-797.
Parsons, S., & Mitchell, P. (2002). The potential of virtual reality in social skills training for people with autistic spectrum disorders. Journal of Intellectual Disability Research, 46(5), 430-443.
Parsons, T. D., Bowerly, T., Buckwalter, J. G., & Rizzo, A. A. (2007). A controlled clinical comparison of attention performance in children with ADHD in a virtual reality classroom compared to standard neuropsychological methods. Child Neuropsychology, 13(4), 363-381.
Parton, B. J., & Neumann, D. L. (2019). The effects of competitiveness and challenge level on virtual reality rowing performance. Psychology of Sport and Exercise, 41, 191-199.
Peifer, C. (2012). Psychophysiological correlates of flow-experience. In S. Engeser (Ed.), Advances in flow research (pp. 139-164). New York, NY: Springer.
Peifer, C., Syrek, C., Ostwald, V., Schuh, E., & Antoni, C. H. (2020). Thieves of flow: How unfinished tasks at work are related to flow experience and wellbeing. Journal of Happiness Studies, 21, 1641-1660.
Pekrun, R., & Stephens, E. J. (2011). Academic emotions. In K. R. Harris, S. Graham, & T. C. Urdan (Eds.), APA educational psychology handbook (pp. 3-31). Washington, DC: American Psychological Association.
Pekrun, R., Goetz, T., Titz, W., & Perry, R. P. (2002). Positive emotions in education. In E. Frydenberg (Ed.), Beyond coping: Meeting goals, visions, and challenges (pp. 149-174). Oxford, UK: Elsevier.
Pelet, J. É., Ettis, S., & Cowart, K. (2017). Optimal experience of flow enhanced by telepresence: Evidence from social media use. Information & Management, 54(1), 115-128.
Pérez, L., Diez, E., Usamentiaga, R., & García, D. F. (2019). Industrial robot control and operator training using virtual reality interfaces. Computers in Industry, 109, 114-120.
Pérez-Olmos, I., & Ibáñez-Pinilla, M. (2014). Night shifts, sleep deprivation, and attention performance in medical students. International Journal of Medical Education, 5, 56-62.
Phakiti, A. (2018) Confirmatory factor analysis and structural equation modeling. In A. Phakiti, P. de Costa, L. Plonsky, & S. Starfield (Eds.), The palgrave handbook of applied linguistics research methodology (pp. 459-500). London, UK: Palgrave Macmillan.
Pierce, G. L., & Cleary, P. F. (2016). The K-12 educational technology value chain: Apps for kids, tools for teachers and levers for reform. Education and Information Technologies, 21(4), 863-880.
Piffer, D. (2012). Can creativity be measured? An attempt to clarify the notion of creativity and general directions for future research. Thinking Skills and Creativity, 7(3), 258-264.
Pittalis, M., & Christou, C. (2010). Types of reasoning in 3D geometry thinking and their relation with spatial ability. Educational Studies in Mathematics, 75(2), 191-212.
Pitta-Pantazi, D., Sophocleous, P., & Christou, C. (2013). Spatial visualizers, object visualizers and verbalizers: Their mathematical creative abilities. ZDM, 45(2), 199-213.
Plewe, D. A., & Röcker, C. (2017). Aesthetic intelligence for effective and pleasurable design. In W. J. Chung & C. S. Shin (Eds.), Advances in affective and pleasurable design (pp. 385-390). Cham, CH: Springer.
Plucker, J. A., Beghetto, R. A., & Dow, G. T. (2004). Why isn't creativity more important to educational psychologists? Potentials, pitfalls, and future directions in creativity research. Educational Psychologist, 39(2), 83-96.
Posner, M. I., Sheese, B. E., Odludaş, Y., & Tang, Y. (2006). Analyzing and shaping human attentional networks. Neural Networks, 19(9), 1422-1429.
Prabhu, V., Sutton, C., & Sauser, W. (2008). Creativity and certain personality traits: Understanding the mediating effect of intrinsic motivation. Creativity Research Journal, 20(1), 53-66.
Pretz, J. E., & McCollum, V. A. (2014). Self-perceptions of creativity do not always reflect actual creative performance. Psychology of Aesthetics, Creativity, and the Arts, 8(2), 227-236.
Priess-Groben, H. A., & Hyde, J. S. (2017). Implicit theories, expectancies, and values predict mathematics motivation and behavior across high school and college. Journal of Youth and Adolescence, 46(6), 1318-1332.
Primus, D. J., & Sonnenburg, S. (2018). Flow experience in design thinking and practical synergies with lego serious play. Creativity Research Journal, 30(1), 104-112.
Puente-Díaz, R., & Cavazos-Arroyo, J. (2017). The influence of creative mindsets on achievement goals, enjoyment, creative self-efficacy and performance among business students. Thinking Skills and Creativity, 24, 1-11.
Purcell, A. T., & Gero, J. S. (1998). Drawings and the design process: A review of protocol studies in design and other disciplines and related research in cognitive psychology. Design Studies, 19(4), 389-430.
Puryear, J. S., Kettler, T., & Rinn, A. N. (2019). Relating personality and creativity: Considering what and how we measure. The Journal of Creative Behavior, 53(2), 232-245.
Qureshi, S. M., & Kang, C. (2015). Analysing the organizational factors of project complexity using structural equation modelling. International Journal of Project Management, 33(1), 165-176.
Rafi, A., & Samsudin, K. (2010). Impact of spatial ability training in desktop virtual environment. In S. Mukerji & P. Tripathi (Eds.), Cases on transnational learning and technologically enabled environments (pp. 180-189). Hershey, PA: IGI Global.
Rafi, A., Anuar, K., Samad, A., Hayati, M., & Mahadzir, M. (2005). Improving spatial ability using a web-based virtual environment (WbVE). Automation in Construction, 14(6), 707-715.
Rai, D., & Lin, C. W. W. (2019). The influence of implicit self-theories on consumer financial decision making. Journal of Business Research, 95, 316-325.
Ramful, A., Lowrie, T., & Logan, T. (2017). Measurement of spatial ability: Construction and validation of the spatial reasoning instrument for middle school students. Journal of Psychoeducational Assessment, 35(7), 709-727.
Rao, D. C., & Saha, S. K. (in press). An immersive learning platform for efficient biology learning of secondary school-level students. Journal of Educational Computing Research. Retrieved from https://doi.org/10.1177/0735633119854031
Rasch, T., & Schnotz, W. (2009). Interactive and non-interactive pictures in multimedia learning environments: Effects on learning outcomes and learning efficiency. Learning and Instruction, 19(5), 411-422.
Rattan, A., & Georgeac, O. A. (2017). Understanding intergroup relations through the lens of implicit theories (mindsets) of malleability. Social and Personality Psychology Compass, 11(4), e12305.
Rattan, A., Good, C., & Dweck, C. S. (2012). “It's ok-not everyone can be good at math”: Instructors with an entity theory comfort (and demotivate) students. Journal of Experimental Social Psychology, 48(3), 731-737.
Rattan, A., Savani, K., Chugh, D., & Dweck, C. S. (2015). Leveraging mindsets to promote academic achievement: Policy recommendations. Perspectives on Psychological Science, 10, 721-726.
Raykov, T. (2001). Estimation of congeneric scale reliability using covariance structure analysis with nonlinear constraints. British Journal of Mathematical and Statistical Psychology, 54, 315-323.
Reid, A., & Solomonides, I. (2007). Design students' experience of engagement and creativity. Art, Design & Communication in Higher Education, 6(1), 27-39.
Reilly, D., Neumann, D. L., & Andrews, G. (2017). Gender differences in spatial ability: Implications for STEM education and approaches to reducing the gender gap for parents and educators. In M. S. Khine (Ed.), Visual-spatial ability in STEM education (pp. 195-224). Cham, CH: Springer.
Rhodewalt, F. (1994). Conceptions of ability, achievement goals, and individual differences in self‐handicapping behavior: On the application of implicit theories. Journal of Personality, 62(1), 67-85.
RickertInez, N. P., Meras, I. L., & Witkow, M. R. (2014). Theories of intelligence and students' daily self-handicapping behaviors. Learning and Individual Differences, 36, 1-8.
Riding, R. (2005). Individual differences and educational performance. Educational Psychology, 25(6), 659-672.
Rieche, H., Leuders, T., & Renkl, A. (2019). If a student thinks," I'm not a math person", Do preservice teachers notice? European Journal of Science and Mathematics Education, 7(1), 32-49.
Risina, D. F. (2017). Imorivement earky counting ability with fun cooking activities. Science, Engineering, Education, and Development Studies (SEEDS): Conference Series, 1(1), 35-42.
Ritter, F. E., Tehranchi, F., & Oury, J. D. (2019). ACT‐R: A cognitive architecture for modeling cognition. Wiley Interdisciplinary Reviews: Cognitive Science, 10(3), e1488.
Rizzo, A. A., Bowerly, T., Shahabi, C., Buckwalter, J. G., Klimchuk, D., & Mitura, R. (2004). Diagnosing attention disorders in a virtual classroom. Computer, 37(6), 87-89.
Rizzo, A. A., Buckwalter, J. G., Neumann, U., Kesselman, C., & Thiébaux, M. (1998). Basic issues in the application of virtual reality for the assessment and rehabilitation of cognitive impairments and functional disabilities. CyberPsychology & Behavior, 1(1), 59-78.
Roach, V., Fraser, G., Kryklywy, J., Mitchell, D., & Wilson, T. D. (2016). Guiding low spatial ability individuals through visual salience cueing: The dual importance of where and when to look. The FASEB Journal, 30(1), 128.
Robinson, P. (2012) Abilities to learn: Cognitive abilities. In N. M. Seel (Ed.), Encyclopedia of the sciences of learning (pp. 17-20). Boston, MA: Springer.
Roldán, J. J., Crespo, E., Martín-Barrio, A., Peña-Tapia, E., & Barrientos, A. (2019). A training system for Industry 4.0 operators in complex assemblies based on virtual reality and process mining. Robotics and Computer-Integrated Manufacturing, 59, 305-316.
Rose, F. D., Brooks, B. M., & Rizzo, A. A. (2005). Virtual reality in brain damage rehabilitation. Cyberpsychology & Behavior, 8(3), 241-262.
Rosenberg, M. D., Finn, E. S., Scheinost, D., Constable, R. T., & Chun, M. M. (2017). Characterizing attention with predictive network models. Trends in Cognitive Sciences, 21(4), 290-302.
Runco, M. A. (2014). Creativity: Theories and themes: Reseach, development, and practice. London, UK: Elsevier.
Runco, M. A., & Jaeger, G. J. (2012). The standard definition of creativity. Creativity Research Journal, 24(1), 92-96.
Ryan, S., & Mercer, S. (2012). Implicit theories: Language learning mindsets. In M. Sarah, R. Stephen, & W. Marion (Eds.), Psychology for language learning (pp. 74-89). London, UK: Palgrave Macmillan.
Ryazanov, A. A., & Christenfeld, N. J. (2018). Incremental mindsets and the reduced forgiveness of chronic failures. Journal of Experimental Social Psychology, 76, 33-41.
Safin, S., Dorta, T., Pierini, D., Kinayoglu, G., & Lesage, A. (2016). Design Flow 2.0, assessing experience during ideation with increased granularity: A proposed method. Design Studies, 47, 23-46.
Salthouse, T. A. (2009). When does age-related cognitive decline begin? Neurobiology of Aging, 30(4), 507-514.
Sanjamsai, S., & Phukao, D. (2018). Flow experience in computer game playing among Thai university students. Kasetsart Journal of Social Sciences, 39(2), 175-182.
Sarkar, P., & Chakrabarti, A. (2011). Assessing design creativity. Design Studies, 32(4), 348-383.
Sawyer, R. K. (2018). Teaching and learning how to create in schools of art and design. Journal of the Learning Sciences, 27(1), 137-181.
Schierz, O., Nixdorf, D. R., Singer, S., & Reissmann, D. R. (2012). Self‐reported ability to concentrate in patients with painful temporomandibular disorders compared to the general population. Community Dentistry and Oral Epidemiology, 40(6), 507-515.
Scholl, B. J. (2001). Objects and attention: The state of the art. Cognition, 80(1-2), 1-46.
Schroder, H. S., Kneeland, E. T., Silverman, A. L., Beard, C., & Björgvinsson, T. (2019). Beliefs about the malleability of anxiety and general emotions and their relation to treatment outcomes in acute psychiatric treatment. Cognitive Therapy and Research, 43(2), 312-323.
Schüler, J. (2007). Arousal of flow experience in a learning setting and its effects on exam performance and affect. Zeitschrift für Pädagogische Psychologie, 21(3/4), 217-227.
Schüler, J., & Brunner, S. (2009). The rewarding effect of flow experience on performance in a marathon race. Psychology of Sport and Exercise, 10(1), 168-174.
Schumacker, R. E., & Lomax, R. G. (2016). A beginner’s guide to structural equation modeling (4th ed.). New York, NY: Routledge.
Schutte, N. S., & Malouff, J. M. (2020). Connections between curiosity, flow and creativity. Personality and Individual Differences, 152, 109555.
Schwartzstein, J. (2014). Selective attention and learning. Journal of the European Economic Association, 12(6), 1423-1452.
Schwarzkopf, S. (2008). Creativity, capital and tacit knowledge: The Crawford agency and British advertising in the interwar years. Journal of Cultural Economy, 1(2), 181-197.
Selya, A. S., Rose, J. S., Dierker, L. C., Hedeker, D., & Mermelstein, R. J. (2012). A practical guide to calculating Cohen’s f2, a measure of local effect size, from PROC MIXED. Frontiers in Psychology, 3, 111.
Septian, R., Darajat, J., Suntoda, A., & Mulana, M. (2018). Increasing the ability of concentration through the implementation of brain Gym. TEGAR: Journal of Teaching Physical Education in Elementary School, 2(1), 11-14.
Serino, S., & Magni, E. E. R. (2017). The potentiality of virtual reality for the evaluation of spatial abilities: The mental spatial reference frame test. Journal of Alternative Medicine Research, 9(2), 177-182.
Sevincer, A. T., Kluge, L., & Oettingen, G. (2014). Implicit theories and motivational focus: Desired future versus present reality. Motivation and Emotion, 38(1), 36-46.
Shafieezadeh, A., & Ellingwood, B. R. (2012). Confidence intervals for reliability indices using likelihood ratio statistics. Structural Safety, 38, 48-55.
Sharifi, S. S., & Palmeira, M. (2017). Customers' reactions to technological products: The impact of implicit theories of intelligence. Computers in Human Behavior, 77, 309-316.
Shema-Shiratzky, S., Brozgol, M., Cornejo-Thumm, P., Geva-Dayan, K., Rotstein, M., Leitner, Y., ... & Mirelman, A. (2019). Virtual reality training to enhance behavior and cognitive function among children with attention-deficit/hyperactivity disorder: Brief report. Developmental Neurorehabilitation, 22(6), 431-436.
Shernoff, D. J., & Vandell, D. L. (2007). Engagement in after-school program activities: Quality of experience from the perspective of participants. Journal of Youth and Adolescence, 36(7), 891-903.
Shernoff, D. J., Csikszentmihalyi, M., Schneider, B., & Shernoff, E. S. (2014). Student engagement in high school classrooms from the perspective of flow theory. In M. Csikszentmihalyi (Ed.), Applications of flow in human development and education (pp. 475-494). Dordrecht, NL: Springer.
Shih, S. S. (2011). Perfectionism, implicit theories of intelligence, and Taiwanese eighth-grade students’ academic engagement. The Journal of Educational Research, 104(2), 131-142.
Shin, N. (2006). Online learner’s ‘flow’experience: An empirical study. British Journal of Educational Technology, 37(5), 705-720.
Shipp, S. (2004). The brain circuitry of attention. Trends in Cognitive Sciences, 8(5), 223-230.
Simonton, D. K. (2014). Creative performance, expertise acquisition, individual differences, and developmental antecedents: An integrative research agenda. Intelligence, 45, 66-73.
Singh, A., & Deol, N. S. (2018). An analysis of anxiety and worry management, concentration ability and relaxation ability among national level sprinters and long distance runners. International Journal of Physiology, Nutrition and Physical Education, 3(1), 598-600.
Sirih, M., & Ibrahim, N. (2019). The effect of learning models and spatial intelligences to biology learning outcomes by controlling the initial knowledge. International Journal of Learning, Teaching and Educational Research, 18(6), 20-38.
Skadberg, Y. X., & Kimmel, J. R. (2004). Visitors’ flow experience while browsing a web site: Its measurement, contributing factors and consequences. Computers in Human Behavior, 20(3), 403-422.
Smiley, P. A., Buttitta, K. V., Chung, S. Y., Dubon, V. X., & Chang, L. K. (2016). Mediation models of implicit theories and achievement goals predict planning and withdrawal after failure. Motivation and Emotion, 40(6), 878-894.
Smith, S., & Ericson, E. (2009). Using immersive game-based virtual reality to teach fire-safety skills to children. Virtual Reality, 13(2), 87-99.
Snyderman, M., & Rothman, S. (1987). Survey of expert opinion on intelligence and aptitude testing. American Psychologist, 42(2), 137-144.
Solak, E., & Cakir, R. (2015). Exploring the effect of materials designed with augmented reality on language learners' vocabulary learning. Journal of Educators Online, 12(2), 50-72.
Spence, I., & Feng, J. (2010). Video games and spatial cognition. Review of General Psychology, 14(2), 92-104.
Spinath, B., Spinath, F. M., Riemann, R., & Angleitner, A. (2003). Implicit theories about personality and intelligence and their relationship to actual personality and intelligence. Personality and Individual Differences, 35(4), 939-951.
Sportillo, D., Paljic, A., & Ojeda, L. (2018). Get ready for automated driving using Virtual Reality. Accident Analysis & Prevention, 118, 102-113.
Stavrou, N. A., Psychountaki, M., Georgiadis, E., Karteroliotis, K., & Zervas, Y. (2015). Flow theory-goal orientation theory: Positive experience is related to athlete’s goal orientation. Frontiers in Psychology, 6, 1499.
Stein, M. I. (1953). Creativity and culture. The Journal of Psychology, 36(2), 311-322.
Steinberg, L. (2005). Cognitive and affective development in adolescence. Trends in Cognitive Sciences, 9(2), 69-74.
Sternberg, R. J. (2003). Wisdom, intelligence and creativity synthesized Cambridge, UK: Cambridge Press.
Sternberg, R. J., & Grigorenko, E. L. (2001). A capsule history of theory and research on styles. In R. J. Sternberg & L. F. Zhang (Eds.), Perspectives on thinking, learning and cognitive styles (pp. 1-21). Mahwah, NJ: Lawrence Erlbaum Associates.
Stones, C., & Cassidy, T. (2010). Seeing and discovering: how do student designers reinterpret sketches and digital marks during graphic design ideation? Design Studies, 31(5), 439-460.
Suh, J., & Cho, J. Y. (2020). Linking spatial ability, spatial strategies, and spatial creativity: A step to clarify the fuzzy relationship between spatial ability and creativity. Thinking Skills and Creativity, 35, 100628.
Sun, R., Wu, Y. J., & Cai, Q. (2019). The effect of a virtual reality learning environment on learners’ spatial ability. Virtual Reality, 23(4), 385-398.
Sung, G., Park, Y., Choi, T. K., & Park, S. W. (2020). Implicit theories and depression in clinical and non-clinical samples: The mediating role of experiential avoidance. Current Psychology, 39, 68-73.
Sutton, K. J., & Williams, A. P. (2007). Spatial cognition and its implications for design. Hong Kong, HK: International Association of Societies of Design Research.
Taber, J. M., Klein, W. M., Persky, S., Ferrer, R. A., Kaufman, A. R., Thai, C. L., & Harris, P. R. (2017). Interest in and reactions to genetic risk information: The role of implicit theories and self-affirmation. Social Science & Medicine, 190, 101-110.
Taber, K. S. (2017). The use of Cronbach’s alpha when developing and reporting research instruments in science education. Research in Science Education, 48(6), 1-24.
Tarampi, M. R., Heydari, N., & Hegarty, M. (2016). A tale of two types of perspective taking: Sex differences in spatial ability. Psychological Science, 27(11), 1507-1516.
Thakur, G., Sharma, L. A. R. A., & Joshi, B. P. (2018). Effect of selected balancing asana on attention and concentration. International Journal of Adopted Physical Education and Yoga, 3(7), 22-26.
Thompson, B. (2002). What future quantitative social science research could look like: Confidence intervals for effect sizes. Educational Researcher, 32(3), 25-32.
Tobert, S., & Moneta, G. B. (2013). Flow as a function of affect and coping in the workplace. Individual Differences Research, 11(3), 102-113.
Tomassini, J. (2012). Educators weigh e-textbook cost comparisons. Education Week, 31(30), 1-19.
Torner, J., Alpiste, F., & Brigos, M. (2015). Spatial ability in computer-aided design courses. Computer-Aided Design and Applications, 12(1), 36-44.
Torrance, E. P. (1966). The Torrance tests of creative thinking: Norms-technical manual (research ed.). Princeton, NJ: Personnel Press.
Trafimow, D. (2018). Confidence intervals, precision and confounding. New Ideas in Psychology, 50, 48-53.
Treue, S. (2001). Neural correlates of attention in primate visual cortex. Trends in Neurosciences, 24(5), 295-300.
Tsai, K. C. (2013). Examining gender differences in creativity. The International Journal of Social Sciences, 13(1), 115-122.
Tsotsos, J. K. (2011). A computational perspective on visual attention. Cambridge, MA: MIT Press.
Tsotsos, J. K., Kotseruba, I., Rasouli, A., & Solbach, M. D. (2018). Visual attention and its intimate links to spatial cognition. Cognitive Processing, 19(1), 121-130.
Tudos, S., Predoiua, A., & Predoiu, R. (2015). Topographical memory and the concentration of attention in top female tennis players. Procedia-Social and Behavioral Sciences, 190, 293-298.
Tuker, C. (2019). Training spatial skills with virtual reality and augmented reality. In N. Lee (Ed.), Encyclopedia of computer graphics and games (pp. 1-9). Cham, CH: Springer.
Turgut, M. (2015). Development of the spatial ability self-report scale (SASRS): Reliability and validity studies. Quality & Quantity, 49(5), 1997-2014.
Um, E., Plass, J. L., Hayward, E. O., & Homer, B. D. (2012). Emotional design in multimedia learning. Journal of Educational Psychology, 104(2), 485-498.
Ursuţiu, D., Samoilă, C., Drăgulin, S., & Constantin, F. A. (2018). Investigation of music and colours influences on the levels of emotion and concentration. In M. E. Auer & D. G. Zutin (Eds.), Online engineering & internet of things (pp. 910-918). Cham, CH: Springer.
Valdois, S., Roulin, J. L., & Bosse, M. L. (2019). Visual attention modulates reading acquisition. Vision Research, 165, 152-161.
van Aalderen-Smeets, S. I., & van der Molen, J. H. W. (2018). Modeling the relation between students’ implicit beliefs about their abilities and their educational STEM choices. International Journal of Technology and Design Education, 28(1), 1-27.
van der Ham, I. J., Postma, A., & Laeng, B. (2014). Lateralized perception: the role of attention in spatial relation processing. Neuroscience & Biobehavioral Reviews, 45, 142-148.
Vanbelle, S. (2016). A new interpretation of the weighted kappa coefficients. Psychometrika, 81(2), 399-410.
Vander Heyden, K. M., van Atteveldt, N. M., Huizinga, M., & Jolles, J. (2016). Implicit and explicit gender beliefs in spatial ability: Stronger stereotyping in boys than girls. Frontiers in Psychology, 7, 1114.
Vogt, P. W. (2007). Quantitative research methods for professionals. Toronto, CA: Pearson.
Wagenmakers, E.-J., Wetzels, R., Borsboom, D., van der Maas, H. L. J., & Kievit, R. A. (2012). An agenda for purely confirmatory research. Perspectives on Psychological Science 7(6), 632-638.
Wakita, T., Ueshima, N., & Noguchi, H. (2012). Psychological distance between categories in the Likert scale: Comparing different numbers of options. Educational and Psychological Measurement, 72(4), 533-546.
Waller, L., & Papi, M. (2017). Motivation and feedback: How implicit theories of intelligence predict L2 writers’ motivation and feedback orientation. Journal of Second Language Writing, 35, 54-65.
Wang, G., & Netemeyer, R. G. (2004). Salesperson creative performance: Conceptualization, measurement, and nomological validity. Journal of Business Research, 57(8), 805-812.
Wang, S. C., Peck, K. L., & Chern, J. Y. (2010). Difference in time influencing creativity performance between design and management majors. International Journal of Technology and Design Education, 20(1), 77-93.
Warren, F., Mason-Apps, E., Hoskins, S., Azmi, Z., & Boyce, J. (2018). The role of implicit theories, age, and gender in the creative performance of children and adults. Thinking Skills and Creativity, 28, 98-109.
Warren, F., Mason‐Apps, E., Hoskins, S., Devonshire, V., & Chanvin, M. (2019). The relationship between implicit theories of intelligence, attainment and socio‐demographic factors in a UK sample of primary school children. British Educational Research Journal, 45(4), 736-754.
Watson, P., Pearson, D., Theeuwes, J., Most, S. B., & Le Pelley, M. E. (2020). Delayed disengagement of attention from distractors signalling reward. Cognition, 195, 104125.
Wigert, B. (2018). Constructing an evidence-based model for managing creative performance. In R. Reiter-Palmon, V. L. Kennel, & J. C. Kaufman (Eds.), Individual creativity in the workplace (pp. 339-369). Cambridge, MA: Academic Press.
Wirth, W., Hartmann, T., Böcking, S., Vorderer, P., Klimmt, C., Schramm, H., ... & Biocca, F. (2007). A process model of the formation of spatial presence experiences. Media Psychology, 9(3), 493-525.
Witkin, H. A., Goodenough, D. R., & Oltman, P. K. (1979). Psychological differentiation: Current status. Journal of Personality and Social Psychology, 37(7), 1127-1145.
Wolf, E. J., Harrington, K. M., Clark, S. L., & Miller, M. W. (2013). Sample size requirements for structural equation models: An evaluation of power, bias, and solution propriety. Educational and Psychological Measurement, 73(6), 913-934.
Wu, C. H. J., & Liang, R. D. (2011). The relationship between white-water rafting experience formation and customer reaction: A flow theory perspective. Tourism Management, 32(2), 317-325.
Yan, Y., Davison, R. M., & Mo, C. (2013). Employee creativity formation: The roles of knowledge seeking, knowledge contributing and flow experience in Web 2.0 virtual communities. Computers in Human Behavior, 29(5), 1923-1932.
Yaumi, M., & Ibrahim, N. (2013). Pembelajaran Berbasis Kecerdasan Jamak [Multiple intelligence-based learning]. Jakarta, ID: Kencana.
Yeager, D. S., & Dweck, C. S. (2012). Mindsets that promote resilience: When students believe that personal characteristics can be developed. Educational Psychologist, 47(4), 302-314.
Yeh, C. S. H. (2015). Exploring the effects of videogame play on creativity performance and emotional responses. Computers in Human Behavior, 53, 396-407.
Yen, J., & Sun, C. (2008). A study on the design teachers' and students' recognition of performance evaluation criteria. Journal of Science and Technology, 17, 41-57.
Yeshurun, Y., & Carrasco, M. (2008). The effects of transient attention on spatial resolution and the size of the attentional cue. Perception & Psychophysics, 70(1), 104-113.
Yılmaz, H. B. (2017). On the development and measurement of spatial ability. International Electronic Journal of Elementary Education, 1(2), 83-96.
Yokochi, S., & Okada, T. (2005). Creative cognitive process of art making: A field study of a traditional Chinese ink painter. Creativity Research Journal, 17(2-3), 241-255.
Yoshida, K., Sawamura, D., Ogawa, K., Ikoma, K., Asakawa, K., Yamauchi, T., & Sakai, S. (2014). Flow experience during attentional training improves cognitive functions in patients with traumatic brain injury: An exploratory case study. Hong Kong Journal of Occupational Therapy, 24(2), 81-87.
Yuan, X., & Lee, J. H. (2014). A quantitative approach for assessment of creativity in product design. Advanced Engineering Informatics, 28(4), 528-541.
Zhang, Y. Q., Tian, G. L., & Tang, N. S. (2016). Latent variable selection in structural equation models. Journal of Multivariate Analysis, 152, 190-205.
Zhang, Z., Zhang, M., Chang, Y., Aziz, E. S., Esche, S. K., & Chassapis, C. (2018). Collaborative virtual laboratory environments with hardware in the loop. In M. E. AuerAbul, K. M. Azad, A. Edwards, & T. de Jong (Eds.), Cyber-physical laboratories in engineering and science education (pp. 363-402). Cham, CH: Springer.
Zhou, T. (2013). The effect of flow experience on user adoption of mobile TV. Behaviour & Information Technology, 32(3), 263-272.
Zhou, T., & Lu, Y. (2011). Examining mobile instant messaging user loyalty from the perspectives of network externalities and flow experience. Computers in Human Behavior, 27(2), 883-889.
Zhu, Y., Ritter, S. M., Müller, B. C., & Dijksterhuis, A. (2017). Creativity: Intuitive processing outperforms deliberative processing in creative idea selection. Journal of Experimental Social Psychology, 73, 180-188.
Zimmermann, P., & Leclercq, M. (2002). Neuropsychological aspects of attention functions and disturbances. In M. Leclercq & P. Zimmermann (Eds.), Applied neuropsychology of attention: Theory, diagnosis and rehabilitation (pp. 66-85). Hoke, UK: Psychology Press.
Zonnefeld, V. (2019). Implications of training in incremental theories of intelligence for undergraduate statistics students. In M. S. Hannula, G. C. Leder, F. Morselli, M. Vollstedt, & Q. Zhang (Eds.), Affect and mathematics education (pp. 195-218). Cham, CH: Springer.