簡易檢索 / 詳目顯示

研究生: 張顓鵬
Chang, Chuan-Peng
論文名稱: 低濃度室內環境氨氣偵測儀器原型機之開發
The Research and Development of a Prototype Instrument for Low Concentration Ammonia Detection in Indoor Environment
指導教授: 呂家榮
Lu, Chia-Jung
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 94
中文關鍵詞: 氨氣Arduino有機半導體環境監測
英文關鍵詞: Ammonia, Arduino, Organic Semiconductor, Environmental Monitoring
DOI URL: http://doi.org/10.6345/THE.NTNU.DC.021.2018.B05
論文種類: 學術論文
相關次數: 點閱:182下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗搭配由國立交通大學光電所所提供的氨氣傳感器元件與Arduino 一並使用,建立低成本的可攜式環境氨氣偵測儀,分析學校廁所周圍的環境氨氣濃度;並架設氨氣濃度生成系統作為實驗室內各濃度氨氣來源。由交大光電所所提供的氨氣傳感器元件是由有機半導體作為傳感器主要的感應材料來進行氨氣的感測,當有還原性氣體通過時,會吸附在表面上並造成半導體的背景電流下降,由量測電流下降的幅度推算氣體濃度。原型機的建立主要分為架構部分與氣體管線部份,透過 Arduino 程式控制電磁閥與收取類比訊號的功能來儲存訊號並分析。實驗一開始先進行氨氣生成系統的建立,透過標準氨氣氣體鋼瓶與質量流量控制器來調整至所需的氨氣濃度,並使用衝擊瓶將氨氣通入水中量測 pH 值變化來記錄實際生成的氨氣濃度,之後完成原型機的組裝並進行測試與實際採樣分析。視傳感器元件的狀態,目前能夠偵測到濃度低至 100 ppb 、高至 2500 ppb 的氨氣。實現以低成本與低技術要求完成室內氨氣濃度分析的功能。日後藉由Arduino 的擴充可能性與便利性,能夠做到無線傳輸的功能,實現實時大範圍即時環境監測,建立雲端監測網。

    In this study, we’ve combined Arduino with the ammonia sensor unit, which provided by NCTU Department of Photonics Institute of OE Engineering to constructed a low-cost portable environment ammonia sensing device for analyzed ambient ammonia concentration around the school toilet, and built an ammonia concentration generating system as the ammonia source in the laboratory. The ammonia sensor unit used Organic semiconductor as key material for sensing ammonia. When the reduction gas contacted with the sensor unit. The decrease of background current caused by the absorption of the reduction gas, then computing the concentration of ammonia by the variety of background current. The establishment of the prototype was mainly divided into the structure part and gas pipeline part. Controlling the solenoid valve and saving the analog signals by Arduino. At the beginning of the experiment, the ammonia concentration generating system was built. The concentration of ammonia was adjusted by standard ammonia cylinder and the mass flow controller, aerated to H2O by impringer and measured the pH value, and estimated the concentration of ammonia formed by generating system. After the completion of the prototype assembly and correction and real sampling analysis. According to the state of sensor units, we could measure successfully the concentration of ammonia as low as 100 ppb, and up to 2500 ppb. Demonstrated that we could complete to analyze the indoor ammonia concentration in the low-cost and low- technical requirements. In the future, arise from the extension possibility and convenience of Arduino and modules, it can also realize the wireless transmission, achieve the real time large-scale environment monitor.

    中文摘要 I 英文摘要 II 目錄 IV 表目錄 VII 圖目錄 VIII 第一章 緒論 1 1.1 前言 1 1.2 NH3(g)簡介 3 1.2.1 氨氣來源 3 1.2.2 衍生危害及影響 7 1.3臺灣現行NH3(g)的標準測定方法 9 1.4 NH3(g)化學傳感器的讀值 12 1.4.1 電化學傳感器 12 1.4.2 非電化學傳感器 13 1.4.2.1 光傳感器(Optical Sensors) 13 1.4.2.2 化學電阻式傳感器(Chemiresistive Sensors) 18 1.4.2.3 壓電晶體化學傳感器(Piezoelectric Crystal Chemical Sensors) 21 1.5 氨氣傳感器元件介紹 24 1.5.1 傳感器元件簡介 24 1.5.2 傳感器應用實例 26 1.5.3 傳感器元件特性 30 1.6 Arduino 簡介 32 1.6.1 Arduino UNO 簡介 33 第二章 實驗部分 35 2.1 實驗藥品與儀器 35 2.1.1 實驗藥品 35 2.1.2 實驗儀器與器材 36 2.2 生成系統建立 40 2.3 pH值驗證採樣及分析方法 43 2.4 傳感器測試電路 46 2.5原型機建立 50 2.5.1 硬體電路設計開發 50 2.5.2 程式控制 57 2.5.3 過濾材料選擇 59 第三章 結果與討論 62 3.1 生成系統濃度與驗證 62 3.2 傳感器元件訊號測試及校正曲線 64 3.2.1 透過高阻抗電流計測試 64 3.2.2 傳感器元件與電路結合測試 65 3.2.3 校正曲線 67 3.3 原型機測試 69 3.3.1 濕度測試 70 3.3.2 氨氣測試 72 3.4 真實環境量測 76 3.5 後續探討 83 3.5.1 一氧化氮對原型機訊號之影響 83 3.5.2 與現行方法比較 84 3.5.3 原型機QA/QC 85 3.5.4 傳感器元件的其他可能應用 86 第四章 結論 87 參考資料 89

    1. 高雄市政府環境保護局 空氣汙染防制網站 空氣汙染來源與特性http://air.ksepb.gov.tw/Article/Detail/1.
    2. 行政院環境保護署環境檢驗所 空氣和物理檢測方式
    https://www.niea.gov.tw/analysis/method/ListMethod.asp?methodtype=AIR.
    3. 簡日昇. 微型氣相層析儀. 國立臺灣師範大學, 2013.
    4. 黃淑欣. 以雲端同步雙層析儀進行揮發性有機氣體汙染之連續分析田野調查與數據統計方法研究. 國立臺灣師範大學, 2017.
    5. 陳冠宇. 大氣PM2.5二次氣膠採樣誤差暨氣/固相分布探討. 國立雲林科技大學, 2018.
    6. 志尚儀器股份有限公司http://www.jusun.com.tw/.
    7. 張瑞喬. 大氣 PM2.5水溶性無機鹽微粒與前驅氣體之半連續監測系統. 國立交通大學, 2014.
    8. 行政院環境保護署 空氣汙染排放量查詢系統 氨源排放量推估手冊https://teds.epa.gov.tw/new_main2-0-1.htm#%E9%9D%A2%E6%BA%90.
    9. Markus Amann,Oene Oenema, Gerard Velthof, ALTERRA, Wageningen UR, Zbigniew Klimont, Wilfried Winiwarter, Emissions from agriculture and their control potentials. TSAP Report #3 IIASA, 2012.
    10. 王會賓. 淺談混凝土防凍劑的種類及注意事項. SCIENCE&TECHNOLOGY INFORMATION, 2008, 1, 429.
    11. ATSDR. ToxFAQs™ for Ammonia, 2004.
    https://www.atsdr.cdc.gov/toxfaqs/tf.asp?id=10&tid=2.
    12. Australian Government Department of the Environment and Energy. Aommnia(Total).
    http://www.npi.gov.au/resource/ammonia-total.
    13. L.J.M.van der Eerden, Toxicity of ammonia to plants. Agriculture and Environment.1982,7,223-235.
    14. Charles J. Patton, S. R. Crouch, Spectrophotometric and kinetics investigation of the Berthelot reaction for the determination of ammonia, Analytical Chemical.1977,49(3),464-469.
    15. Wenqing Cao, Yixiang Duan, Optical fiber-based evanescent ammonia sensor, Sensors and Actuators B: Chemical.2005,110(2),252-259.
    16. Sigma-Aldrich. Bromocresol purple.
    https://www.sigmaaldrich.com/catalog/product/sial/b5880?lang=en®ion=TW.
    17. Meng Gao, Shiwu Li, Yuhan Lin, Yi Geng, Xia Ling, Luochao Wang, Anjun Qin, Ben Zhong Tang, Fluorescent Light-Up Detection of Amine Vapors Based on Aggregation-Induced Emission, ACS Sens., 2016,1(1),179-184.
    18. Yufei Ma, Ying He, Yao Tong, Xin Yu, and Frank K. Tittel , Ppb-level detection of ammonia based on QEPAS using a power amplified laser and a low resonance frequency quartz tuning fork , Optics Express , 2017,25(23),29356-29364.
    19. Ehsan Danesh, Francisco Molina-Lopez, Malick Camara, Alexia Bontempi, Andrés Vásquez Quintero, Damien Teyssieux, Laurent Thiery, Danick Briand, Nico F. de Rooij, and Krishna C. Persaud , Development of a New Generation of Ammonia Sensors on Printed Polymeric Hotplates , Anal. Chem., 2014,86,8951-8958.
    20. Sadanand Pandey and Karuna K. Nanda, Au Nanocomposite Based Chemiresistive Ammonia Sensor for Health Monitoring, ACS Sens.,2016,1(1),55-62.
    21. Penn State , Collage of Earth and Mineral Sciences. Aqueous phase chemistry.
    https://www.ems.psu.edu/~brune/m532/m532_ch5_aqueous_phase.htm.
    22. Masashi Kikuchi, Katsuya Omori, Seimei Shiratori, Quartz Crystal Microbalance (QCM) Sensor for Ammonia Gas using Clay/Polyelectrolyte Layer-by-Layer SelfAssembly Film, IEEE Sensors Proceedings. 2004, 2,718-721.
    23. Ying Huac, Hui Yub, Zhiyong Yanc, Qinfei Ke, The surface chemical composition effect of a polyacrylic acid/polyvinyl alcohol nanofiber/quartz crystal microbalance sensor on ammonia sensing behavior, RSC Adv., 2018, 8, 8747-8754.
    24. Mark E. Meyerhoff, Polymer membrane electrode based potentiometric ammonia gas sensor, Anal. Chem., 1980, 52 (9), 1532–1534.
    25. Yusuf Abdullahi Badamasi, The working principal of an arduino, Conf. on Electron. Comput. and Computation. Abuja IEEE, 2014,11,1-4.
    26. Aardino.
    https://www.arduino.cc/
    27. 林子傑.開發一可攜式模組化微型氣相層析儀應用於愷他命氣體特徵標誌偵測. 國立臺灣大學, 2017.
    28. Microchip. ATmega328.
    https://www.microchip.com/wwwproducts/en/ATmega328.
    29. 王友利. 硫酸改質活性碳對氨氣吸附能力之研究. 崑山科技大學,2008.
    30. 工業技術研究院,綠能與環境研究所.空氣中異味物質之連續監測技術之開發,2014.
    31. Model 6487 Picoammeter/Voltage Source Manual Reference Manual.
    https://www.tek.com/low-level-sensitive-and-specialty-instruments/series-6400-picoammeters-manual/model-6487-picoammeter.
    32. 董庭維. 高靈敏氨氣與一氧化氮有機垂直式氣體感測器.國立交通大學,2017.
    33. Solarmer. PTB7.
    http://solarmer.com/polymersproduct/ptb-7.
    34. Texas Instruments. LF353 Datasheet.
    http://www.ti.com/lit/ds/symlink/lf353-n.pdf.
    35. T.-H.Nguyen, L.Mugherli, C.Rivron, T.-H.Tran-Thi, Innovative colorimetric sensors for the selective detection of monochloramine in air and in water, Sensors and Actuators B: Chemical. 2015,208, 622-627.
    36. Teledyne API. Model T201.
    http://www.teledyne-api.com/products/nitrogen-compound-instruments/t201.
    37. 大華高科股份有限公司. 氨感測器 Ammonia.
    http://www.taiwah.com.tw/index.php?do=prod_detail&path=152_253_254&id=577.
    38. 吳意筑. 高有機半導體胺類氣體感測器結構改善及應用開發. 國立清華大學,2016.
    39. Liang-Yu Chang, Ming-Yen Chuang, Hsiao-Wen Zan, Hsin-Fei Meng, Chia-Jung Lu, Ping-Hung Yeh, Jian-Nan Chen, One-Minute Fish Freshness Evaluation by Testing the Volatile Amine Gas with an Ultrasensitive Porous-Electrode-Capped Organic Gas Sensor System, ACS Sens. 2017, 2, 531−539.
    40. Ming-Zhi Dai, Yi-Lo Lin, Hung-Cheng Lin, Hsiao-Wen Zan, Kai-Ting Chang, Hsin-Fei Meng, Jiunn-Wang Liao, May-Jywan Tsai, Henrich Cheng, Highly Sensitive Ammonia Sensor with Organic Vertical Nanojunctions for Noninvasive Detection of Hepatic Injury, Anal. Chem. 2013, 85, 3110−3117.
    41. L. B. Kreuzer, C. K. N. Patel, Nitric Oxide Air Pollution: Detection by Optoacoustic Spectroscopy, Science. 1972, 173(3991), 45-47.
    42. SKC. UMEx 300 Passive Samplers, for Ammonia.
    https://www.skcinc.com/catalog/product_info.php?products_id=2265.
    43. 勞動部勞動及職業安全衛生研究所. 行政院勞工委員會採樣分析建議方法 2401 氨.
    https://www.ilosh.gov.tw/media/2627/f1395714992126.pdf.

    下載圖示
    QR CODE