簡易檢索 / 詳目顯示

研究生: 盧海瑩
LU, Hai-Ying
論文名稱: 探討自行車踩踏單圈的功率變化
The intra-pedal stroke variation of power output
指導教授: 相子元
Shiang, Tzyy-Yuang
口試委員: 吳建輝 陳家祥
口試日期: 2021/05/24
學位類別: 碩士
Master
系所名稱: 運動競技學系
Department of Athletic Performance
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 52
中文關鍵詞: 鞋內足壓系統慣性感測器功率計踩踏技術
英文關鍵詞: Pedar-X system, IMU, power meter, pedaling technique
DOI URL: http://doi.org/10.6345/NTNU202100656
論文種類: 學術論文
相關次數: 點閱:193下載:19
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 前言:目前功率計都是以平均功率輸出,無法獲得單圈中瞬間的功率變化。若將單圈踩踏分期,可獲得更多踩踏技術或踩踏效率相關的資訊。目的:將單圈功率分成八期,探討分期功率與平均功率之差異,並探討不同齒輪比及踏頻對功率分布的影響。方法:招募12名受試者,以鞋內足壓系統 (Pedar-X system) 及慣性感測器 (IMU),收取左腳踩踏時的力量及曲柄的角速度變化,並使用三維動作分析系統 (Vicon) 作為踩踏分期並找出有效力,之後計算功率。以兩種齒輪比 (53/11、53/15) 及三種踏頻 (60、75、90 rpm) 隨機試驗。統計方法為以皮爾森積差相關 (PCC) 及Bland Altman比較本實驗踏頻及功率與SRM功率計在不同齒輪比及踏頻下之相關性及一致性。以成對樣本t檢定比較分八期後,各分期功率與平均功率之差異。並以二因子重複量數變異分析,確認兩項因子間 (A因子:齒輪比,B因子:踏頻) 是否有交互作用,並使用Bonferroi法進行事後比較,顯著水準定為α≤.05。結果:計算踏頻及功率與SRM踏頻及功率皆呈顯著正相關。在六種騎乘條件下,只有第二期功率與平均功率未達顯著差異。隨著齒輪比或踏頻增加平均功率與峰值功率皆上升,但峰值功率的變異較大。結論:以平均功率監控踩踏數據無法得知瞬間功率,若將踩踏功率分期,能得知踩踏時的功率分布情形,進而判斷選手的踩踏技術,提供運動訓練、踩踏效率等相關的資訊。

    The power is the most representative output indicator in cycling. Many riders use a power meter to monitor training. However, a power meter can only obtain the mean power, that user can maintain a stable power output during training. But the mean power will ignore the variation of positive impulse and negative impulse. We can’t use a power meter to evaluate the difference in pedaling technique between two riders with same mean power. If divide the power into phase, more information about pedaling technique or pedaling efficiency can be known. The purpose is divide the power in 8 phase, to compare each phase and the mean power. And the influence of different gear ratios and cadences on power distribution. The study recruited 12 participants. A road bike was set on an indoor bike trainers for the pedaling trials with different gear ratios (53/11、53/15) and different cadences (60, 75, 90 rpm). With Pedar-X system and IMU to collect the force and angular velocity in left side when pedaling. The pedaling phase and find the effective force with Vicon, and calculate the power. After collecting the data, use Pearson's Correlation Coefficient and Bland Altman to compare the correlation between the cadence and the power with the SRM in six trials. Paired Sample t-test was used to compare the difference between each phase and the mean power in a cycle. The repeated-measures two-way ANOVA confirm whether there is any interaction between the two factors. The result shows that the cadence and the power with SRM have a significant positive correlation. In six trials, only the second phase don’t have significant differences with the mean power. As the cadence increase, mean power and peak power are increase, but the variation of peak power is larger. In conclusion, monitor pedaling with mean power can’t obtain instant power. The power divide into 8 phase allows users adjust their posture avoid sports injuries. Provide cyclist with training, which can improve the pedaling efficiency or compare the pedaling techniques in different users.

    第壹章 緒論 1 第一節 研究背景 1 第二節 研究問題 3 第三節 研究目的 3 第四節 研究假設 3 第五節 研究範圍與限制 3 第六節 研究之重要性 4 第七節 名詞操作性定義 4 第貳章 文獻探討 7 第一節 從不同觀點推算功率變化 7 第二節 自行車踩踏分期之意義 9 第三節 足壓系統的信效度分析及應用 11 第四節 文獻總結 12 第參章 研究方法 14 第一節 實驗對象 14 第二節 實驗儀器與設備 14 第三節 儀器架設與校正 17 第四節 實驗流程 17 第五節 資料處理 19 第六節 統計分析 24 第肆章 結果 25 第一節 計算踏頻及功率與SRM的踏頻及功率之比較 25 第二節 單圈平均功率與分期功率之差異 28 第三節 單圈平均功率與峰值功率之差異 30 第伍章 討論與建議 32 第一節 計算踏頻及功率與SRM的踏頻及功率之比較 32 第二節 單圈平均功率與分期功率之差異 33 第三節 單圈平均功率與峰值功率之差異 36 第四節 有效力與踏頻之關係 37 第五節 結論與建議 38 引用文獻 39 附錄一 單圈踏頻變化 46 附錄二 不同受試者左腳足底壓力中心分布 47 附錄三 不同受試者右腳足底壓力中心分布 48 附錄四 不同受試者雙邊踩踏力量及功率 49 附錄五 SRM功率分布情形 50 附錄六 平均功率分布情形 .51 附錄七 分期功率變化 52

    李尹鑫、陳家祥、嚴笠哲、相子元 (2018)。自行車踩踏功率的應用與發展。體育學報,51(2),145-154。
    李尹鑫、陳家祥、相子元 (2018)。自行車訓練監控指標.。運動表現期刊,5(1),19-25。
    張柏苓、吳堉光、相子元 (2012)。不同阻力對自行車坐姿與站姿騎乘的影響。大專體育學刊,14(4),448-457。
    張錚璿、羅懷保、相子元 (2010)。不同騎乘姿勢對自行車踩踏力量之影響。華人運動生物力學期刊,(2),48-55。
    Abbiss, C., Peiffer, J., Wall, B., Martin, D., & Laursen, P. (2009). Influence of starting strategy on cycling time trial performance in the heat. International Journal of Sports Medicine, 30(3), 188-193.
    Abdul Razak, A. H., Zayegh, A., Begg, R. K., & Wahab, Y. (2012). Foot plantar pressure measurement system: A review. Sensors, 12(7), 9884-9912.
    Allen, H., Coggan, A. R., & McGregor, S. (2019). Training and racing with a power meter: VeloPress.
    Barnett, S., Cunningham, J. L., & West, S. (2001). A comparison of vertical force and temporal parameters produced by an in-shoe pressure measuring system and a force platform. Clinical Biomechanics, 16(4), 353-357.
    Bini, R., Hume, P., Croft, J. L., & Kilding, A. (2013). Pedal force effectiveness in Cycling: a review of constraints and training effects. Journal of Science and Cycling, 2 (1), 11-24.
    Bini, R., Hume, P. A., & Croft, J. L. (2011). Effects of bicycle saddle height on knee injury risk and cycling performance. Sports Medicine, 41(6), 463-476.
    Bini, R. R., & Carpes, F. P. (2014). Biomechanics of Cycling. Springer.
    Burns, G. T., Zendler, J. D., & Zernicke, R. F. (2017). Wireless insoles to measure ground reaction forces: step-bystep validity in hopping, walking, and running. ISBS Proceedings Archive, 35(1), 255.
    Burns, G. T., Deneweth Zendler, J., & Zernicke, R. F. (2019). Validation of a wireless shoe insole for ground reaction force measurement. Journal of Sports Sciences, 37(10), 1129-1138.
    Cain, S. M., Ashton-Miller, J. A., & Perkins, N. C. (2016). On the skill of balancing while riding a bicycle. PLoS One, 11(2), e0149340.
    Cordero, A. F., Koopman, H., & Van Der Helm, F. (2004). Use of pressure insoles to calculate the complete ground reaction forces. Journal of Biomechanics, 37(9), 1427-1432.
    Coyle, E., Feltner, M., Kautz, S., Hamilton, M., Montain, S., Baylor, A., . . . Petrek, G. (1991). Physiological and biomechanical factors associated with elite endurance cycling performance. Medicine and Science in Sports and Exercise, 23(1), 93-107.
    Da Silva, J. C. L., Tarassova, O., Ekblom, M., Andersson, E., Rönquist, G., & Arndt, A. (2016). Quadriceps and hamstring muscle activity during cycling as measured with intramuscular electromyography. European Journal of Applied Physiology, 116(9), 1807-1817.
    Da Silva Sores, J., Carpes, F. P., de Fátima Geraldo, G., Medeiros, F. B., Kunzler, M. R., Machado, Á. S., . . . De Andrade, A. G. P. (2021). Functional data analysis reveals asymmetrical crank torque during cycling performed at different exercise intensities. Journal of Biomechanics, 110478.
    De Vey Mestdagh, K. (1998). Personal perspective: in search of an optimum cycling posture. Applied Ergonomics, 29(5), 325-334.
    Dorel, S., Couturier, A., & Hug, F. (2009). Influence of different racing positions on mechanical and electromyographic patterns during pedalling. Scandinavian Journal of Medicine & Science in Sports, 19(1), 44-54.
    Dorel, S., Couturier, A., Lacour, J.-R., Vandewalle, H., Hautier, C., & Hug, F. (2010). Force-velocity relationship in cycling revisited: benefit of two-dimensional pedal forces analysis. Medicine & Science in Sports & Exercise, 42(6), 1174-1183.
    Dorel, S., Drouet, J.-M., Couturier, A., Champoux, Y., & Hug, F. (2009). Changes of pedaling technique and muscle coordination during an exhaustive exercise. Medicine & Science in Sports & Exercise, 41(6), 1277.
    Duc, S., Bertucci, W., Pernin, J., & Grappe, F. (2008). Muscular activity during uphill cycling: effect of slope, posture, hand grip position and constrained bicycle lateral sways. Journal of Electromyography and Kinesiology, 18(1), 116-127.
    Fong, D. T.-P., Chan, Y.-Y., Hong, Y., Yung, P. S.-H., Fung, K.-Y., & Chan, K.-M. (2008). Estimating the complete ground reaction forces with pressure insoles in walking. Journal of Biomechanics, 41(11), 2597-2601.
    García-López, J., Díez-Leal, S., Ogueta-Alday, A., Larrazabal, J., & Rodríguez-Marroyo, J. A. (2016). Differences in pedalling technique between road cyclists of different competitive levels. Journal of Sports Sciences, 34(17), 1619-1626.
    Gardner, A. S., Stephens, S., Martin, D. T., Lawton, E., Lee, H., & Jenkins, D. (2004). Accuracy of SRM and power tap power monitoring systems for bicycling. Medicine & Science in Sports & Exercise, 36(7), 1252-1258.
    Gregor, R. J., Broker, J. P., & Ryan, M. M. (1991). 4 The Biomechanics of Cycling. Exercise and Sport Sciences Reviews, 19(1), 127-170.
    Holliday, W., Theo, R., Fisher, J., & Swart, J. (2019). Cycling: Joint kinematics and muscle activity during differing intensities. Sports Biomechanics, 1-15.
    Hsiao, H., Guan, J., & Weatherly, M. (2002). Accuracy and precision of two in-shoe pressure measurement systems. Ergonomics, 45(8), 537-555.
    Hug, F., & Dorel, S. (2009). Electromyographic analysis of pedaling: a review. Journal of Electromyography and Kinesiology, 19(2), 182-198.
    Hug, F., Drouet, J. M., Champoux, Y., Couturier, A., & Dorel, S. (2008). Interindividual variability of electromyographic patterns and pedal force profiles in trained cyclists. European Journal of Applied Physiology, 104(4), 667-678.
    Hurkmans, H., Bussmann, J., Benda, E., Verhaar, J., & Stam, H. (2006). Accuracy and repeatability of the Pedar Mobile system in long-term vertical force measurements. Gait & Posture, 23(1), 118-125.
    Jönsson, M., Munkhammar, T., Norrbrand, L., & Berg, H. E. (2019). Foot centre of pressure and ground reaction force during quadriceps resistance exercises; a comparison between force plates and a pressure insole system. Journal of Biomechanics, 87, 206-210.
    Jobson, S. A., Passfield, L., Atkinson, G., Barton, G., & Scarf, P. (2009). The analysis and utilization of cycling training data. Sports Medicine, 39(10), 833-844.
    Jung, D.-Y. (2018). The effect of protective socks combined with functional insole on plantar foot pressure in healthy adults: a pilot study. Korean Society of Physical Medicine, 13(1), 147-154.
    Kim, D. H., Lee, D., Kim, Y., Kim, S., & Shin, D. (2021). A power assistant algorithm based on Human–Robot interaction analysis for improving system efficiency and riding experience of E-Bikes. Sustainability, 13(2), 768.
    Koch, M., Lunde, L.-K., Ernst, M., Knardahl, S., & Veiersted, K. B. (2016). Validity and reliability of pressure-measurement insoles for vertical ground reaction force assessment in field situations. Applied Ergonomics, 53, 44-51.
    Kopacz, K., Fronczek-Wojciechowska, M., & Kosielski, P. (2014). Movement analysis in tandem track cyclist using video analysis. JKES, 68(24), 59-64.
    Lee, S.-W., Mase, K., & Kogure, K. (2006). Detection of spatio-temporal gait parameters by using wearable motion sensors. Paper presented at the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference.
    Leirdal, S., & Ettema, G. (2011). Pedaling technique and energy cost in cycling. Medicine and Science in Sports and Exercise, 43(4), 701-705.
    Lim, A. C., Homestead, E. P., Edwards, A. G., Carver, T. C., Kram, R., & Byrnes, W. C. (2011). Measuring changes in aerodynamic/rolling resistances by cycle-mounted power meters. Medicine and Science in Sports and Exercise, 43(5), 853-860.
    Lorås, H., Ettema, G., & Leirdal, S. (2009). The muscle force component in pedaling retains constant direction across pedaling rates. Journal of Applied Biomechanics, 25(1), 85-92.
    Mann, R., Malisoux, L., Urhausen, A., Meijer, K., & Theisen, D. (2016). Plantar pressure measurements and running-related injury: A systematic review of methods and possible associations. Gait & Posture, 47, 1-9.
    Nagano, H., & Begg, R. K. (2018). Shoe-insole technology for injury prevention in walking. Sensors, 18(5), 1468.
    Nakazato, K., Scheiber, P., & Müller, E. (2011). A comparison of ground reaction forces determined by portable force-plate and pressure-insole systems in alpine skiing. Journal of Sports Science & Medicine, 10(4), 754.
    Passfield, L., Hopker, J. G., Jobson, S., Friel, D., & Zabala, M. (2017). Knowledge is power: Issues of measuring training and performance in cycling. Journal of Sports Sciences, 35(14), 1426-1434.
    Peveler, W., Bishop, P., Smith, J., Richardson, M., & Whitehorn, E. (2005). Comparing methods for setting saddle height in trained cyclists. Journal of Exercise Physiology Online, 8(1).
    Price, C., Parker, D., & Nester, C. (2016). Validity and repeatability of three in-shoe pressure measurement systems. Gait & Posture, 46, 69-74.
    Putti, A., Arnold, G., Cochrane, L., & Abboud, R. (2007). The Pedar® in-shoe system: Repeatability and normal pressure values. Gait & Posture, 25(3), 401-405.
    Quod, M., Martin, D., Martin, J., & Laursen, P. (2010). The power profile predicts road cycling MMP. International Journal of Sports Medicine, 31(06), 397-401.
    Ramanathan, A., Kiran, P., Arnold, G., Wang, W., & Abboud, R. (2010). Repeatability of the Pedar-X® in-shoe pressure measuring system. Foot and Ankle Surgery, 16(2), 70-73.
    Rossato, M., Bini, R. R., Carpes, F. P., Diefenthaeler, F., & Moro, A. R. P. (2008). Cadence and workload effects on pedaling technique of well-trained cyclists.International Journal of Sports Medicine,29(9), 746-752.
    Sanderson, D. J., & Black, A. (2003). The effect of prolonged cycling on pedal forces. Journal of Sports Sciences, 21(3), 191-199.
    Seiberl, W., Jensen, E., Merker, J., Leitel, M., & Schwirtz, A. (2018). Accuracy and precision of loadsol® insole force-sensors for the quantification of ground reaction force-based biomechanical running parameters. European Journal of Sport Science, 18(8), 1100-1109.
    Silberman, M. R., Webner, D., Collina, S., & Shiple, B. J. (2005). Road bicycle fit. Clinical Journal of Sport Medicine, 15(4), 271-276.
    Sjöberg, M., Berg, H. E., Norrbrand, L., Andersen, M. S., Gutierrez-Farewik, E. M., Sundblad, P., & Eiken, O. (2020). Influence of gravity on biomechanics in flywheel squat and leg press. Sports Biomechanics, 1-17.
    Staples, T. J., Do‐Duc, A. A., Link, J. E., & Martin, J. C. (2020). Emphasizing one leg facilitates single‐leg training using standard cycling equipment. Scandinavian Journal of Medicine & Science in Sports, 30(6), 1017-1023.
    Stöggl, T., & Martiner, A. (2017). Validation of Moticon’s OpenGo sensor insoles during gait, jumps, balance and cross-country skiing specific imitation movements. Journal of Sports Sciences, 35(2), 196-206.
    Taborri, J., Keogh, J., Kos, A., Santuz, A., Umek, A., Urbanczyk, C., . . . Rossi, S. (2020). Sport Biomechanics Applications Using Inertial, Force, and EMG Sensors: A Literature Overview. Applied Bionics and Biomechanics, 2020.
    Ting, L. H., Kautz, S. A., Brown, D. A., & Zajac, F. E. (2000). Contralateral movement and extensor force generation alter flexion phase muscle coordination in pedaling. Journal of Neurophysiology, 83(6), 3351-3365.
    Ting, L. H., Kautz, S. A., Brown, D. A., & Zajac, F. E. (1999). Phase reversal of biomechanical functions and muscle activity in backward pedaling. Journal of Neurophysiology, 81(2), 544-551.
    Turpin, N. A., & Watier, B. (2020). Cycling biomechanics and its relationship to performance. Applied Sciences, 10(12), 4112.
    Varley, M. C., Fairweather, I. H., & Aughey1, Robert J. (2012). Validity and reliability of GPS for measuring instantaneous velocity during acceleration, deceleration, and constant motion. Journal of Sports Sciences, 30(2), 121-127.
    Vogt, S., Schumacher, Y., Roecker, K., Dickhuth, H.-H., Schoberer, U., Schmid, A., & Heinrich, L. (2007). Power output during the Tour de France. International Journal of Sports Medicine, 28(09), 756-761.
    Watson, M., Bibbo, D., Duffy, C. R., Riches, P. E., Conforto, S., & Macaluso, A. (2014). Validity and Reliability of an Alternative Method for Measuring Power Output During Six-Second All-out Cycling. Journal of Applied Biomechanics, 30(4), 598-603.
    Weaver, B. T., Fitzsimons, K., Braman, J., & Haut, R. (2016). The role of shoe design on the prediction of free torque at the shoe–surface interface using pressure insole technology. Sports Biomechanics, 15(3), 370-384.
    Wooles, A. L., Robinson, A. J., & Keen, P. S. (2005). A static method for obtaining a calibration factor for SRM bicycle power cranks. Sports Engineering, 8(3), 137-144.

    下載圖示
    QR CODE