研究生: |
李昕燐 Sin-Lin Lee |
---|---|
論文名稱: |
低氧預處理對運動後血液氧化壓力的影響 The effect of exercise on blood antioxidant capacity after hypoxic preconditioning |
指導教授: |
謝伸裕
Hsieh, Shen-Yu |
學位類別: |
碩士 Master |
系所名稱: |
運動競技學系 Department of Athletic Performance |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 中文 |
論文頁數: | 55 |
中文關鍵詞: | 常壓低氧 、中高強度耐力運動 、抗氧化酶活性 |
英文關鍵詞: | hypoxia, moderate-high intensity exercise, oxidative damage markers |
論文種類: | 學術論文 |
相關次數: | 點閱:157 下載:2 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
預處理 (preconditioning) 定義為在主要的刺激前,先給與短暫或較小的刺激,啟動細胞或組織的保護機制,減低主要刺激帶來的傷害。預處理的方式包含缺血、運動或低氧預處理等,多用於心臟等其他器官組織,少有針對血液與抗氧化能力做探究。低氧刺激與高強度運動皆可增加氧化傷害,藉由兩者的結合,擬探討低氧刺激所啟動的抗氧化機制可否減緩高強度運動對人體帶來的氧化傷害。目的:探討人體在進行高強度運動前,低氧預處理對血液氧化壓力的影響並觀察其對運動後恢復期的變化。方法:徵選19至20歲健康、有規律運動習慣的男性大學生12位,依雙盲重複量數平衡次序法進行低氧預處理及無預處理。低氧預處理:實驗參與者先間斷性吸入相當於海拔5,700m低氧氣體5分鐘再中斷5分鐘,連續進行3個循環 (共30分鐘),休息1小時後再進行以85% VO2max為固定運動強度的原地跑步機運動30分鐘。常氧控制:與前面處理相同,只需將低氧以常氧氣體替換。於實驗前、預處理後立即、運動後立即、30分鐘、1小時及2小時進行採血,分析抗氧化酶活性與氧化傷害指標。結果:不論有無低氧預處理介入血糖與乳酸在運動後立即顯著升高 (p<.05)。抗氧化方面,預處理的介入對紅血球/血漿超氧離子歧化酶 (SOD)活性、過氧化氫酶 (CAT)活性、麩胱甘肽過氧化酶 (GPx)活性均未達統計上差異。氧化傷害指標方面,紅血球脂質過氧化物 (TBARS) 在運動後立即明顯增加 (p<.05);低氧預處理運動後立即、30、60分鐘顯著上升(p<.05)。結論:低氧預處理並不能減少中高強度運動所產生氧化傷害,且也不利於人體在高強度運動後的快速復元。
Purpose: To test the hypothesis that levels of erythrocyte antioxidants might increase after hypoxia which may counteract the exercise induced free radicals. Methods: Twelve health college male subjects performed hypoxic precondition (HP) and control (CON) trials with balanced order. HP: Subjects were preconditioned with three 5 min simulated hypoxia (O2=10.3%), each separated by 5 min of normoxia (O2=20.93%). CON: Same as HP but hypoxia was replaced by normoxia. Both trials rest for 1hr then followed with a 30 min of 85% VO2max exercise. Venous blood samples were taken before, post preconditioning and post exercise at 0, 30, 60, and 120 min. Oxidative stress index such as antioxidant enzymes and oxidative damage markers were determined. Comparisons between trails and time points were performed with repeated two-way ANOVA (SPSS 13.0) statistical software. The significant level was set at α<.05. Results: Erythrocyte and plasma antioxidant capacity were not change between HP and CON. Lipid oxidative marker (TBARS) level after exercise was significant higher than at rest (p<.05) in both HP and CON. In HP, the level of TBARS were still significantly higher at 30 and 60 min post exercise. Conclusion: Hypoxic preconditioning cannot lower the oxidative stress induced by exercise and might also prolong the oxidative stress recovery after exercise.
李建明、黃欽永、黃谷臣、湯馥君(2002)。不同年齡層參與馬拉松賽的血液生化值之比較。大專體育學刊,4(2), 157-164。
李淑玲、許美智(2003)。補充含抗氧化劑之飲料對高強度耐力運動時體內抗氧化能力及肌肉損傷之影響。大專體育學刊,5(1), 297-304。
林嘉志、姚承義(2006)。以激效作用觀點探討運動之抗老化機轉。運動生理暨體能學報,5,61-70。
林嘉志、姚承義、陸康豪(2008)。硫辛酸增補對運動的可能效益。中華體育季刊,22(2),24-33。
林學宜、林培元、徐廣明、徐台閣(2000)。不同強度運動對抗氧化酵素及丙二醛的影響。體育學報,29,137-148。
海春旭、馮安吉(2006)。自由基醫學。中國西安:第四軍醫大學出版社。
陸希平、陳家玉、蔡宗博、曹昌堯、郭炳宏、郭宗甫、楊泮池(2008)。 器官前處置:定義、臨床應用及生物學機轉。臺灣醫學,12(1),123-128。
陸康豪、謝伸裕、林嘉志(2009)。低氧環境與氧化壓力。中華體育季刊, 23(1),1-9。
陸康豪(2009)。短時間衝刺對耐力運動後血液氧化壓力的影響。未出 版碩士論文,國立台灣師範大學,台北市。
趙善民、黃俊傑、黃麗娟、晉玲、何顯教、梁祚仁等(2004)。寒冷和低氧條件下家兔的血液流變學及自由基的改變。中國血液流變學雜誌,14(1),57-58。
Alessio, H. M., Hagerman, A. E., Fulkerson, B. K., Ambrose, J., Rice, R. E., & Wiley, R. L. (2000). Generation of reactive oxygen species after exhaustive aerobic and isometric exercise. Medicine and Science in Sports and Exercise, 32(9), 1576-1581.
Balakumar, P., Rohilla, A., & Singh, M. (2008). Pre-conditioning and postconditioning to limit ischemia-reperfusion-induced myocardial injury: What could be the next footstep? Pharmacological Research, 57(6), 403-412.
Bushell, A. J., Klenerman, L., Taylor, S., Davies, H., Grierson, I., Helliwell, T. R., et al. (2002). Ischaemic preconditioning of skeletal muscle. 1. Protection against the structural changes induced by ischaemia/reperfusion injury. Journal of Bone and Joint Surgery, 84(8), 1184-1188.
Celedón, G., González, G., Sotomayor, C. P., & Behn, C. (1998). Membrane lipid diffusion and band 3 protein changes in human erythrocytes due to acute hypobaric hypoxia. American Journal of Physiology, 275(6 Pt 1), C1429-1431.
Cimen, M. Y. (2008). Free radical metabolism in human erythrocytes. International Journal of Clinical Chemistry, 390(1-2), 1-11.
Davies, K. J., Quintanilha, A. T., Brooks, G. A., & Packer, L. (1982). Free radicals and tissue damage produced by exercise. Biochemical and Biophysical Research Communications, 107(4), 1198-1205.
Dosek, A., Ohno, H., Acs, Z., Taylor, A. W., & Radak, Z. (2007). High altitude and oxidative stress. Respiratory Physiology & Neurobiology, 158(2-3), 128-131.
Elokda, A. S., Shields, R. K., & Nielsen, D. H. (2005). Effects of a maximal graded exercise test on glutathione as a marker of acute oxidative stress. Journal of Cardiopulmonary Rehabilitation, 25(4), 215-219.
Elosua, R., Molina, L., Fito, M., Arquer, A., Sanchez-Quesada, J. L., Covas, M. I., et al. (2003). Response of oxidative stress biomarkers to a 16-week aerobic physical activity program, and to acute physical activity, in healthy young men and women. Atherosclerosis, 167(2), 327-334.
Finaud, J., Lac, G., & Filaire, E. (2006). Oxidative stress : Relationship with exercise and training. Sports Medicine, 36(4), 327-358.
Forgione, M. A., Cap, A., Liao, R., Moldovan, N. I., Eberhardt, R. T., Lim, C. C., et al. (2002). Heterozygous cellular glutathione peroxidase deficiency in the mouse: Abnormalities in vascular and cardiac function and structure. Circulation, 106(9), 1154-1158.
Giulivi, C., & Davies, K. J. (1990). A novel antioxidant role for hemoglobin. The comproportionation of ferryl hemoglobin with oxyhemoglobin. Journal of Biological Chemistry, 265(32), 19453-19460.
Giulivi, C., & Davies, K. J. (2001). Mechanism of the formation and proteolytic release of H2O2-induced dityrosine and tyrosine oxidation products in hemoglobin and red blood cells. Journal of Biological Chemistry, 276(26), 24129-24136.
Gonzalez, N. C., & Wood, J. G. (2001). Leukocyte-endothelial interactions in environmental hypoxia. Advances in Experimental Medicine and Biology, 502, 39-60.
Harman, D. (2003). The free radical theory of aging. Antioxidants & Redox Signaling, 5(5), 557-561.
Hebbel, R. P., Eaton, J. W., Balasingam, M., & Steinberg, M. H. (1982). Spontaneous oxygen radical generation by sickle erythrocytes. Journal of Clinical Investigation, 70(6), 1253-1259.
Hellsten, Y. (1994). Xanthine dehydrogenase and purine metabolism in man. With special reference to exercise. Acta Physiologica Scandinavica., 621, 1-73.
Jefferson, J. A., Simoni, J., Escudero, E., Hurtado, M. E., Swenson, E. R., Wesson, D. E., et al. (2004). Increased oxidative stress following acute and chronic high altitude exposure. High Altitude Medicine & Biology, 5(1), 61-69.
Johnson, R. M., Goyette, G. J., Ravindranath, Y., & Ho, Y. S. (2005). Hemoglobin autoxidation and regulation of endogenous H2O2 levels in erythrocytes. Free Radical Biology & Medicine, 39(11), 1407-1417.
Khan, S., & O'Brien, P. J. (1995). Modulating hypoxia-induced hepatocyte injury by affecting intracellular redox state. Biochimica et Biophysica Acta 1269(2), 153-161.
Leal Junior, E. C., Lopes-Martins, R. A., Baroni, B. M., De Marchi, T., Rossi, R. P., Grosselli, D., et al. (2009). Comparison between single-diode low-level laser therapy (LLLT) and LED multi-diode (cluster) therapy (LEDT) applications before high-intensity exercise. Photomedicine and Laser Surgery, 27(4), 617-623.
Madden, L. A., Sandström, M. E., Lovell, R. J., & McNaughton, L. (2008). Inducible heat shock protein 70 and its role in preconditioning and exercise. Amino Acids, 34(4), 511-516.
Magalhaes, J., Ascensao, A., Viscor, G., Soares, J. M., Oliveira, J., Marques, F., et al. (2004). Oxidative stress in humans during and after 4 hours of hypoxia at a simulated altitude of 5500 m. Aviation, Space, and Environmental Medicine, 75(1), 16-22.
Miyazaki, H., Oh-ishi, S., Ookawara, T., Kizaki, T., Toshinai, K., Ha, S., et al. (2001). Strenuous endurance training in humans reduces oxidative stress following exhausting exercise. European Journal of Applied Physiology, 84(1-2), 1-6.
Mohanraj, P., Merola, A. J., Wright, V. P., & Clanton, T. L. (1998). Antioxidants protect rat diaphragmatic muscle function under hypoxic conditions. Journal of Applied Physiology, 84(6), 1960-1966.
Murry, C. E., Jennings, R. B., & Reimer, K. A. (1986). Preconditioning with ischemia: A delay of lethal cell injury in ischemic myocardium. Circulation 74(5), 1124-1136.
Nakanishi, K., Tajima, F., Nakamura, A., Yagura, S., Ookawara, T., Yamashita, H., et al. (1995). Effects of hypobaric hypoxia on antioxidant enzymes in rats. Journal of Physiology, 489 ( Pt 3), 869-876.
Pialoux, V., Mounier, R., Ponsot, E., Rock, E., Mazur, A., Dufour, S., et al. (2006). Effects of exercise and training in hypoxia on antioxidant/pro-oxidant balance. European Journal of Clinical Nutrition 60(12), 1345-1354.
Pialoux, V., Mounier, R., Rock, E., Mazur, A., Schmitt, L., Richalet, J. P., et al. (2009). Effects of acute hypoxic exposure on prooxidant or antioxidant balance in elite endurance athletes. International Journal of Sports Medicine, 30(2), 87-93.
Pinho, R. A., Silva, L. A., Pinho, C. A., Scheffer, D. L., Souza, C. T., Benetti, M., et al. (2010). Oxidative stress and inflammatory parameters after an ironman race. Clinical Journal of Sport Medicine, 20(4), 306-311.
Radák, Z., Lee, K., Choi, W., Sunoo, S., Kizaki, T., Oh-ishi, S., et al. (1994). Oxidative stress induced by intermittent exposure at a simulated altitude of 4000 m decreases mitochondrial superoxide dismutase content in soleus muscle of rats. European Journal of Applied Physiology and Occupational Physiology, 69(5), 392-395.
Rasmussen, B. B., Hancock, C. R., & Winder, W. W. (1998). Postexercise recovery of skeletal muscle malonyl-CoA, acetyl-CoA carboxylase, and AMP-activated protein kinase. Journal of Applied Physiology, 85(5), 1629-1634.
Rauchová, H., Vokurková, M., & Koudelová, J. (2005). Developmental changes of erythrocyte catalase activity in rats exposed to acute hypoxia. Physiological Research, 54(5), 527-532.
Schneider, C. D., Barp, J., Ribeiro, J. L., Belló-Klein, A., & Oliveira, A. R. (2005). Oxidative stress after three different intensities of running. Canadian Journal of Applied Physiology, 30(6), 723-734.
Serrano, J., Encinas, J. M., Salas, E., Fernández, A. P., S., C.-B., Fernández-Vizarra, P., et al. (2003). Hypobaric hypoxia modifies constitutive nitric oxide synthase activity and protein nitration in the rat cerebellum. Brain Research, 976(1), 109-119.
Shalev O, L. M., Hebbel RP, Jacob HS, Eaton JW. (1981). Abnormal erythrocyte calcium homeostasis in oxidant-induced hemolytic disease. Blood, 58(6), 1232-1235.
Snyder, L. M., Fortier, N. L., Trainor, J., Jacobs, J., Leb, L., Lubin, B., et al. (1985). Effect of hydrogen peroxide exposure on normal human erythrocyte deformability, morphology, surface characteristics, and spectrin-hemoglobin cross-linking. Journal of Clinical Investigation, 76(5), 1971-1977.
Starnes, J. W., & Taylor, R. P. (2007). Exercise-induced cardioprotection: endogenous mechanisms. Medicine and Science in Sports and Exercise, 39(9), 1537-1543.
Tanaka, H., Monahan, K. D., & Seals, D. R. (2001). Age-predicted maximal heart rate revisited. Journal of the American College of Cardiology, 37(1), 153-156.
Tian, Y., Nie, J., Tong, T. K., Baker, J. S., Thomas, N. E., & Shi, Q. (2010). Serum oxidant and antioxidant status during early and late recovery periods following an all-out 21-km run in trained adolescent runners. European Journal of Applied Physiology and Occupational Physiology.
Tsai, P. H., Kan, N. B., Liu, C. C., Jeng, M. L., He, S. C., & Lin, C. C. (2004). Changes in Blood Lipid Peroxidation Markers after a Single Bout of Exhaustive Exercise. Annual Journal of Physical Education and Sports Science, 4.
Ursini, F., Maiorino, M., Brigelius-Flohé, R., Aumann, K. D., Roveri, A., Schomburg, D., et al. (1995). Diversity of glutathione peroxidases. Methods in Enzymology, 252, 38-53.
Viña, J., Gomez-Cabrera, M. C., Lloret, A., Marquez, R., Miñana, J. B., Pallardó, F. V., et al. (2000). Free radicals in exhaustive physical exercise: Mechanism of production, and protection by antioxidants. International Union of Biochemistry and Molecular Biology Life, 50(4-5), 271-277.