研究生: |
陳柏鈞 Chen, Bo-Jyun |
---|---|
論文名稱: |
以微管陣列薄膜固化酵母菌量產化酒精之可行性研究 Feasibility Study of Ethanol Mass Production from Fermentation by Using Microtube Array Membrane (MTAM) Immobilized Yeast Cells |
指導教授: |
林震煌
Lin, Cheng-Huang |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 52 |
中文關鍵詞: | 微管陣列薄膜 、酵母菌固化 、乙醇發酵 |
英文關鍵詞: | microtube array membranes (MTAM), ethanol fermentation, Immobilized yeast cells |
DOI URL: | http://doi.org/10.6345/THE.NTNU.DC.057.2018.B05 |
論文種類: | 學術論文 |
相關次數: | 點閱:93 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗以新穎的微管陣列薄膜 (microtube array membrane; MTAM) 固化酵母菌進行發酵,發酵過後產物中的乙醇含量則以氣相層析質譜儀進行檢測。微管陣列薄膜是以靜電紡絲技術紡製而成的,這是利用二種不同性質的紡絲液體,在高壓電之下形成雙層結構。其中,親水性的中心核層材料為聚乙二醇(polyethylene oxide; PEO),親油性的外圍殼層則分別使用聚左旋乳酸(poly-L-lactide; PLLA) 及聚碸 (polysulfone; PSF) 來進行實驗。經靜電紡絲製成的薄膜先浸泡在水中,這步驟可以使中心核層的PEO溶於水而達成製得中空纖維的目的。酵母菌使用了Fermentis safale S-04及Kluyveromyces marxianus二種菌種。實驗進行之初,先將酵母菌的個數培養至 107-108 CFU/mL後,再把酵母菌以虹吸原理固化在膜裡面。實驗用每張薄膜的長寬分別為3公分及1公分。以掃描式電子顯微鏡可以觀測到薄膜的單一纖維:直徑約為 50微米,纖維表面的小孔洞為0.5 - 1.5微米。這樣的大小剛好可以關住酵母菌,又可以從微小洞提供養分給酵母菌。為了測試微管陣列薄膜固化酵母菌的效果以及日後量產的可能性,本實驗先應用在自釀啤酒的發酵,並將發酵瓶改為20升的發酵桶。實驗結果發現,本方法比起傳統發酵法效率更高,產能更多。酒精濃度至少提高 15% - 20%。原因是酵母菌固化在薄膜內的反應面積變大,能夠在短時間內充分使用到所有的養份。再者,酵母菌能回收並重複使用,不但可降低發酵時的成本,而且也和符合綠色化學。
In this study, we scaled up fermentation volume from 1 mL to 20 L. Gas chromatography - mass spectrometry was used for the detection of ethanol concentration. A novel technology of using microtube array membranes (MTAM) immobilized yeast cells for mass production of ethanol fermentation. Two types of MTAMs were used to conduct the experiment namely, renewable poly-L-lactic acid (PLLA) and polysulfone (PSF). The MTAMs were cut into a 1 cm (width) x 3 cm (length) size, and the yeasts were siphoned at the desired concentration into the respective MTAMs The presence of nanopores on the ultrathin surface of the MTAM allows for the efficient diffusion of nutrient and waste across the lumen wall. The encapsulated yeast reduced the inhibitory effects, while significantly reducing the cost by repeated use of the encapsulated yeast and the reduction of the need for costly separation. Compared to free cells, MTAM encapsulated yeast registered a better glucose to ethanol conversion efficiency; and in turn registered a higher ethanol concentration of 15% after 10-14 days of fermentation. The successful scaled up fermentation demonstration suggested that potentially, the encapsulation technical using the MTAMs can be applied to various fermentations as a solution to increase output without major modification to existing infrastructures.
[1] M. Nagashima, M. Azuma, S. Noguchi, K. Inuzuka, H. Samejima, Continuous ethanol fermentation using immobilized yeast cells, Biotechnology and bioengineering, 26 (1984) 992-997.
[2] K.H. Lee, I.S. Choi, Y.-G. Kim, D.-J. Yang, H.-J. Bae, Enhanced production of bioethanol and ultrastructural characteristics of reused Saccharomyces cerevisiae immobilized calcium alginate beads, Bioresource Technology, 102
(2011) 8191-8198.
[3] G. Najafpour, H. Younesi, K.S.K. Ismail, Ethanol fermentation in an immobilized cell reactor using Saccharomyces cerevisiae, Bioresource technology, 92 (2004)251-260.
[4] A. Eiadpum, S. Limtong, M. Phisalaphong, High-temperature ethanol fermentation by immobilized coculture of Kluyveromyces marxianus and Saccharomyces cerevisiae, Journal of Bioscience and Bioengineering, 114 (2012)
325-329.
[5] D. Williams, D.M. Munnecke, The production of ethanol by immobilized yeast cells, Biotechnology and Bioengineering, 23 (1981) 1813-1825.
[6] Y. Kourkoutas, A. Bekatorou, I.M. Banat, R. Marchant, A.A. Koutinas, Immobilization technologies and support materials suitable in alcohol beverages production: a review, Food Microbiology, 21 (2004) 377-397.
[7] B.E. Michel, M.R. Kaufmann, The osmotic potential of polyethylene glycol 6000, Plant physiology, 51 (1973) 914-916.
[8] J.M. Harris, Laboratory synthesis of polyethylene glycol derivatives, Journal of Macromolecular Science-Reviews in Macromolecular Chemistry and Physics, 25(1985) 325-373.
[9] D. Garlotta, A literature review of poly (lactic acid), Journal of Polymers and the Environment, 9 (2001) 63-84.
[10] F. Yang, R. Murugan, S. Wang, S. Ramakrishna, Electrospinning of nano/micro scale poly (L-lactic acid) aligned fibers and their potential in neural tissue engineering, Biomaterials, 26 (2005) 2603-2610.
[11] B. Gupta, N. Revagade, J. Hilborn, Poly (lactic acid) fiber: an overview, Progress in polymer science, 32 (2007) 455-482.
[12] A. Noshay, L. Robeson, Sulfonated polysulfone, Journal of applied polymer science, 20 (1976) 1885-1903.
[13] I. Cabasso, E. Klein, J.K. Smith, Polysulfone hollow fibers. I. Spinning and properties, Journal of Applied Polymer Science, 20 (1976) 2377-2394.
[14] X. Yuan, Y. Zhang, C. Dong, J. Sheng, Morphology of ultrafine polysulfone fibers prepared by electrospinning, Polymer International, 53 (2004) 1704-1710.
[15] W.E. Teo, S. Ramakrishna, A review on electrospinning design and nanofibre assemblies, Nanotechnology, 17 (2006) R89.
[16] J. Cooley, Improved methods of and apparatus for electrically separating the relatively volatile liquid component from the component of relatively fixed substances of composite fluids, United Kingdom Patent, 6385 (1900) 19.
[17] W.J. Morton, Method of dispersing fluids, Patents, (1902).
[18] A. Formhals, Method and apparatus for spinning, US patent, 2 (1939) 962.
[19] F. Anton, Process and apparatus for preparing artificial threads, Patents,(1934).
[20] F. Anton, Method and apparatus for spinning, Patents, (1944).
[21] T.J. Sill, H.A. von Recum, Electrospinning: Applications in drug delivery and tissue engineering, Biomaterials, 29 (2008) 1989-2006.
[22] D.H. Reneker, A.L. Yarin, H. Fong, S. Koombhongse, Bending instability of electrically charged liquid jets of polymer solutions in electrospinning, Journal of Applied physics, 87 (2000) 4531-4547.
[23] J. Doshi, D.H. Reneker, Electrospinning process and applications of electrospun fibers, Journal of electrostatics, 35 (1995) 151-160.
[24] D.H. Reneker, I. Chun, Nanometre diameter fibres of polymer, produced by electrospinning, Nanotechnology, 7 (1996) 216.
[25] A.L. Yarin, S. Koombhongse, D.H. Reneker, Taylor cone and jetting from liquid droplets in electrospinning of nanofibers, Journal of applied physics, 90(2001) 4836-4846.
[26] Y. Shin, M. Hohman, M. Brenner, G. Rutledge, Experimental characterization of electrospinning: the electrically forced jet and instabilities, Polymer, 42(2001) 09955-09967.
[27] M.M. Hohman, M. Shin, G. Rutledge, M.P. Brenner, Electrospinning and electrically forced jets. I. Stability theory, Physics of fluids, 13 (2001)2201-2220.
[28] A. Haider, S. Haider, I.-K. Kang, A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology, Arabian Journal of Chemistry, (2015).
[29] V. Beachley, X. Wen, Effect of electrospinning parameters on the nanofiber diameter and length, Materials Science and Engineering: C, 29 (2009) 663-668.
[30] C. Thompson, G.G. Chase, A. Yarin, D. Reneker, Effects of parameters on nanofiber diameter determined from electrospinning model, Polymer, 48 (2007) 6913-6922.
[31] S. De Vrieze, T. Van Camp, A. Nelvig, B. Hagström, P. Westbroek, K. De Clerck, The effect of temperature and humidity on electrospinning, Journal of materials science, 44 (2009) 1357.
[32] A. Moghe, B. Gupta, Co‐axial electrospinning for nanofiber structures: preparation and applications, Polymer Reviews, 48 (2008) 353-377.
[33] J.E. Díaz, A. Barrero, M. Márquez, I.G. Loscertales, Controlled encapsulation of hydrophobic liquids in hydrophilic polymer nanofibers by co‐electrospinning, Advanced Functional Materials, 16 (2006) 2110-2116.
[34] D.G. Yu, C. Branford‐White, S. Bligh, K. White, N.P. Chatterton, L.M. Zhu, Improving Polymer Nanofiber Quality Using a Modified Co‐axial Electrospinning Process, Macromolecular rapid communications, 32 (2011)
744-750.
[35] F. Bai, W. Anderson, M. Moo-Young, Ethanol fermentation technologies from sugar and starch feedstocks, Biotechnology advances, 26 (2008) 89-105.
[36] Y. Lin, S. Tanaka, Ethanol fermentation from biomass resources: current state and prospects, Applied microbiology and biotechnology, 69 (2006) 627-642.
[37] T.W. Nagodawithana, K.H. Steinkraus, Influence of the rate of ethanol production and accumulation on the viability of Saccharomyces cerevisiae in" rapid fermentation", Applied and Environmental Microbiology, 31 (1976)
158-162.
[38] D.J. Erasmus, M. Cliff, H.J. van Vuuren, Impact of yeast strain on the production of acetic acid, glycerol, and the sensory attributes of icewine, American Journal of Enology and Viticulture, 55 (2004) 371-378.
[39] D. Kontkanen, D.L. Inglis, G.J. Pickering, A. Reynolds, Effect of yeast inoculation rate, acclimatization, and nutrient addition on icewine fermentation, American Journal of Enology and Viticulture, 55 (2004) 363-370.
[40] G. Pigeau, D. Inglis, Response of wine yeast (Saccharomyces cerevisiae) aldehyde dehydrogenases to acetaldehyde stress during Icewine fermentation, Journal of applied microbiology, 103 (2007) 1576-1586.
[41] C.D. Powell, D.E. Quain, K.A. Smart, The impact of brewing yeast cell age on fermentation performance, attenuation and flocculation, FEMS Yeast Research, 3 (2003) 149-157.
[42] J. Luong, Kinetics of ethanol inhibition in alcohol fermentation, Biotechnology and bioengineering, 27 (1985) 280-285.
[43] M.J. Torija, N. Rozes, M. Poblet, J.M. Guillamón, A. Mas, Effects of fermentation temperature on the strain population of Saccharomyces cerevisiae, International journal of food microbiology, 80 (2003) 47-53.
[44] G.M. Walker, Metals in yeast fermentation processes, Advances in applied microbiology, 54 (2004) 197-230.
[45] R. Bouthilet, N.E. Neilson, E. Mrak, H. Phaff, The fermentation of trehalose by yeasts and its taxonomic implications, Microbiology, 3 (1949) 282-289.
[46] J.-P. Guyot, M. Calderon, J. Morlon‐Guyot, Effect of pH control on lactic acid fermentation of starch by Lactobacillus manihotivorans LMG 18010T, Journal of Applied Microbiology, 88 (2000) 176-182.
[47] E. Parente, A. Ricciardi, Influence of pH on the production of enterocin 1146 during batch fermentation, Letters in Applied Microbiology, 19 (1994) 12-15.
[48] H. Zhang, J. Wang, S. Ye, M. Chang, Application of electronic nose and statistical analysis to predict quality indices of peach, Food and bioprocess technology, 5 (2012) 65-72.
[49] H. Guohua, W. Yuling, Y. Dandan, D. Wenwen, Z. Linshan, W. Lvye, Study of peach freshness predictive method based on electronic nose, Food Control, 28 (2012) 25-32.
[50] C.-C. Chen, C.-H. Wu, J.-J. Wu, C.-C. Chiu, C.-H. Wong, M.-L. Tsai, H.-T.V.Lin, Accelerated bioethanol fermentation by using a novel yeast immobilization technique: Microtube array membrane, Process Biochemistry,
50 (2015) 1509-1515.
[51] A. Khursheed, Scanning electron microscope, Patents, (2007).
[52] D.C. Joy, Scanning electron microscopy, Materials Science and Technology, (2006).