簡易檢索 / 詳目顯示

研究生: 林哲墩
Lin Jhe Dun
論文名稱: 室內泳池加氯消毒副產物暴露與風險評估-以某大學泳池為例
Health risk assessment of chlorinated disinfection by-products exposure in an university's indoor swimming pool
指導教授: 曾治乾
Tseng, Chie-Chien
學位類別: 碩士
Master
系所名稱: 健康促進與衛生教育學系
Department of Health Promotion and Health Education
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 119
中文關鍵詞: 室內泳池總三鹵甲烷鹵乙酸暴露評估健康風險評估
英文關鍵詞: indoor swimming pool, total trihalomethanes, haloacetic acids, exposure assessment, health risk assessment
DOI URL: https://doi.org/10.6345/NTNU202205488
論文種類: 學術論文
相關次數: 點閱:363下載:22
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究對國立臺灣師範大學游泳池進行20次採樣,紀錄水溫、氣溫、pH值、餘氯濃度和游泳人數,分析總三鹵甲烷、鹵乙酸、總有機碳及濁度,發現池水總三鹵甲烷濃度介於31.75 - 182.33 µg/L,氣相總三鹵甲烷濃度介於13.70 - 63.86 µg/m3,池水鹵乙酸濃度介於48.09 - 126.47 µg/L。
用美國環保署開發之游泳者暴露模式評估總三鹵甲烷與鹵乙酸各暴露途徑之終身每日暴露量,結合致癌斜率係數,算出游泳暴露總三鹵甲烷之終身致癌總風險為1.85 × 10-6 - 1.05 × 10-5;暴露鹵乙酸之終身致癌總風險為4.21 × 10-7 - 1.18 × 10-6。結果顯示游泳暴露加氯消毒副產物之致癌風險,主要源自呼吸吸入總三鹵甲烷,建議室內泳池提高換氣率,降低氣相總三鹵甲烷濃度。
游泳人數與池水總三鹵甲烷、氣相總三鹵甲烷與池水鹵乙酸濃度呈正相關,池水總三鹵甲烷濃度亦與濁度呈正相關,建議泳池管理者限制每天入池人數,多對游泳者宣導入池前先沖洗身體,減少帶入的有機物量,並強化過濾系統之功能,以降低濁度。

We sampled National Taiwan Normal University swimming pool 20 times, water temperature, air temperature, pH, concentrations of chlorine and number of swimmers were recorded. Concentrations of total trihalomethanes, haloacetic acids, total organic carbon and turbidity were analyzed.
The results revealed that concentrations of total trihalomethanes in pool water ranged from 31.75 to 182.33 μg/L. Ambient air total trihalomethanes concentrations ranged from 13.70 to 63.86 μg/m3. Concentrations of haloacetic acids in pool water ranged from 48.09 to 126.47 μg/L.
Swimmer exposure model developed by United States Environmental Protection Agency was used to assess lifeltime average daily dose from total trihalomethanes and haloacetic acids. Lifetime cancer risk was calculated by lifetime average daily dose times cancer slope factors.
The results showed that lifetime cancer risk exposured to total trihalomethanes ranged from 1.85 × 10-6 to 1.05 × 10-5; while lifetime cancer risk exposured to haloacetic acids ranged from 4.21 × 10-7 to 1.18 × 10-6.
According to the results, lifetime cancer risk exposured to chlorinated by-products, major contributed from inhaling of total trihalomethanes. Increasing ventilation rate of indoor pools may help decreasing the risk.
The number of swimmers was positively correlated with concentrations of total trihalomethanes in pool water, total trihalomethanes in ambient air and haloacetic acids in pool water. Concentrations of total trihalomethanes in pool water were also positively correlated with turbidity.
We recommended pool managers to limit the number of swimmers, advise swimmers that they wash their body before swimming to reduce the amount of organic compounds, and strengthen the function of filtration system to decrease turbidity.

第一章 緒論.................................................1 第一節 研究動機...........................................2 第二節 研究目的...........................................3 第二章 文獻探討..............................................7 第一節 加氯消毒的原理......................................7 第二節 加氯消毒副產物......................................7 一、揮發性與非揮發性加氯消毒副產物........................8 二、總三鹵甲烷........................................10 三、鹵乙酸...........................................11 四、總三鹵甲烷與鹵乙酸的致癌物質分類......................12 第三節 加氯消毒副產物生成相關因素...........................14 一、有機物濃度........................................14 二、游泳人數..........................................15 三、鹵素濃度..........................................15 四、反應時間..........................................16 五、pH值.............................................17 六、溫度.............................................17 七、濁度.............................................17 第四節 加氯消毒副產物的暴露評估.............................18 一、游泳池加氯消毒副產物暴露文獻.........................18 二、游泳者暴露模式.....................................21 三、國內游泳者游泳頻率文獻..............................30 四、國內游泳者游泳時間文獻..............................31 第五節 加氯消毒副產物的健康風險評估.........................32 一、終身致癌風險計算方法................................32 二、可接受之風險大小...................................33 三、游泳池加氯消毒副產物的終身致癌風險文獻.................34 第三章 研究方法.............................................36 第一節 研究對象..........................................36 一、國立臺灣師範大學游泳池..............................36 二、國立臺灣師範大學游泳池之游泳者.......................37 第二節 研究設計..........................................38 第三節 採樣與分析........................................40 一、池水樣本採樣......................................41 二、氣相總三鹵甲烷樣本採樣..............................43 三、樣品分析..........................................44 第四節 研究工具..........................................56 一、採樣工具..........................................56 二、分析工具..........................................57 第四章 結果與討論...........................................59 第一節 非競賽型游泳者特性調查結果...........................59 一、游泳者游泳頻率.....................................59 二、游泳者每次游泳時間.................................60 第二節 游泳池採樣與分析結果................................61 一、游泳池採樣環境紀錄.................................61 二、游泳池池水總三鹵甲烷濃度............................64 三、游泳池氣相總三鹵甲烷濃度............................68 四、游泳池池水鹵乙酸濃度................................72 第三節 消毒副產物生成因子與TTHMs、HAAs濃度之相關性...........77 一、游泳池游泳人與總三鹵甲烷、鹵乙酸濃度之相關性............78 二、游泳池總有機碳與總三鹵甲烷、鹵乙酸濃度之相關性..........80 三、游泳池濁度對與總三鹵甲烷、鹵乙酸濃度之相關性............82 四、游泳池溫度與總三鹵甲烷、鹵乙酸濃度之相關性.............83 五、消毒副產物生成相關因子與TTHMs、HAAs濃度之相關性........85 第四節 游泳者之總三鹵甲烷與鹵乙酸暴露評估....................86 一、游泳者暴露總三鹵甲烷之終身每日暴露量..................88 二、游泳者暴露鹵乙酸之終身每日暴露量......................89 第五節 游泳者暴露總三鹵甲烷與鹵乙酸之終身致癌風險評估..........93 一、游泳者暴露總三鹵甲烷之終身致癌風險....................94 二、游泳者暴露鹵乙酸之終身致癌風險.......................95 三、游泳者暴露加氯消毒副產物之終身致癌風險.................96 第五章 結論與建議..........................................100 第一節 結論............................................100 第二節 建議............................................104 參考書目..................................................107

一、中文部分
內政部統計處(2014)。第十次(民國98~100年)國民生命表兩性、男性及女性。臺北市:內政部統計處。
王根樹(2003)。飲用水中消毒副產物之生成,健康風險及其前質控制之研究(行政院國家科學委員會委託之專題研究成果報告編號:NSC91-2211-E-002-030-)。臺北市:行政院國家科學委員會。
王根樹(2004)。飲用水中三鹵甲烷及含鹵乙酸之生成、散佈及健康風險評估(行政院國家科學委員會委託之專題研究成果報告編號:NSC92-2211-E-002-034-)。臺北市:行政院國家科學委員會。
李文昌(1998)。游泳池與按摩池水質管理。新北市:作者。
吳中禎(2011) 。不同運動場館消費者特性差異比較。論文發表於育達商業科技大學休閒與觀光國際學術研討會,苗栗縣。
余育蘋(2001)。國立臺灣大學游泳池經營管理現況之研究。臺大體育學報,4,159-175。
邱文科、羅友鴻、游志雲、葉文裕、陳旺儀(2003)。應用三度空間人體掃瞄技術於皮表面積模式之探討。勞工安全衛生研究季刊,11(2),152-158。
周文萱(2008)。游泳池環境中三鹵甲烷多暴露途徑之健康風險評估。未出版之碩士論文,中國醫藥大學環境醫學研究所,臺中市。
林百顯(2000)。不同表面特性黏土催化高分子凝聚劑與消毒劑(氯)反應之研究。未出版之碩士論文,國立中央大學環境工程研究所,桃園市。
林佑真、溫啟邦、衛沛文(2007)。臺灣地區成年人之休閒運動行為與健康行為、健康狀況、健康相關生活品質之關係探討。臺灣衛誌,26(3),218-228。
林政龍(2007)。大學游泳池對外開放之經營模式管理-國立台灣師範大學個案分析。運動事業管理學術研討會論文集,6,205-230。
洪崇軒(2005)。「以消毒副產物(DBPs)暴露評估為基礎建置安全供水系統之整合管制策略」-子計畫三:「自來水消毒副產物(DBPs)在用水端之暴露評估與管制策略研擬(I)」(行政院國家科學委員會委託之專題研究成果報告編號:NSC94-2621-Z-327-002-)。臺北市:行政院國家科學委員會。
翁瑞宏(2013)。游泳者暴露三鹵甲烷之重要暴露途徑驗證:吐氣樣本採樣與分析。未出版之碩士論文,中國醫藥大學公共衛生學系研究所,臺中市。
國立臺灣大學公共衛生學院健康風險及政策評估中心(2008)。臺灣一般民眾暴露參數彙編。臺北市:國立臺灣大學公共衛生學院健康風險及政策評估中心。
教育部(2010)。泳起來專案-提升學生游泳能力檢測合格率及游泳池新改建行動方案。臺北市:教育部。
教育部體育司(2010)。教部「泳起來」讓孩子游出未來!檢索於2013年12月20日,自教育部電子報。網址:http://epaper.edu.tw/topical.aspx?period_num=397
許逢泰(2005)。學校游泳池經營模式之探討-以臺北縣為例。未出版之碩士論文,國立臺灣師範大學,臺北市。
郭崇義、張哲誠、廖勇柏、簡伯珊、施政甫(2006)。居家用水中消毒副產物鹵乙酸之暴露評估。環境保護,29(1),45-56。
許惠悰(2003)。風險評估與風險管理。新北市:新文京。
許富淑(2006)。輔仁大學游泳池消費者參與行為與滿意度之研究。輔仁大學體育學刊,5,77-93。
陳和睦(1993)。游泳池的經營管理。國民體育季刊,22(1),76-85。
陳奕伸(2011)。臺中市室內溫水游泳池顧客背景變項對滿意度影響研究。休閒保健期刊,5,211-218。
陳緯豪(2006)。游泳池水中含氯乙酸之生成及其液相光催化分解特性研究。未出版之碩士論文,國立高雄第一科技大學,高雄市。
曾治乾(2012)。游泳池水以臭氧消毒法處理之效能探討(臺北市衛生局委託之專題研究成果報告)。臺北市:衛生局。
潘文涵、杜素豪(2008)。民國93-97年度國民營養健康狀況變遷調查(行政院衛生署委託之專題研究成果報告編號:DOH94-FS-6-4)。臺北市:行政院衛生署。
劉舉弘(1994)。休閒住宅市場區隔之研究。未出版之碩士論文,國立臺灣大學商學研究所,臺北市。
樊學信(2003)。室內游泳場所細菌學指標及相關衛生狀況調查分析。海峽預防醫學雜誌,9(5),15-17。
廖寶玫(2000)。淨水程序中添加高分子凝聚劑對混凝與加氯處理效應之研究。未出版之博士論文,國立中央大學環境工程研究所,桃園市。
廖寶玫、許偉倩、邱士豪、馮德芳(2008)。公共游泳池水質管理與風險之探討。物業管理學會論文集,4,55-69。
蔡弦謙(2006)。利用頂空固相微萃取法探討不同化學物質生成三鹵甲烷之研究。未出版之碩士論文,中興大學環境工程學系研究所,臺中市。
環境保護署(2000)。水中總有機碳檢測方法─過氧焦硫酸鹽紫外光氧化/薄膜電導度計測定法。臺北市:環境保護署。
環境保護署(2004)。環境檢驗方法偵測極限測定指引。臺北市:環境保護署。
環境保護署(2005)。水中濁度檢測方法-濁度計法。臺北市:環境保護署。
環境保護署(2010)。水中鹵乙酸與得拉本檢測方法-液相-液相微萃取/氣相層析儀/電子捕捉偵測器法。臺北市:環境保護署。
環境保護署(2012)。水中揮發性有機化合物檢測方法-吹氣捕捉/氣相層析質譜儀法。臺北市:環境保護署。
蕭美玲(主編)。(2006)。「可接受風險」認知【專題】。藥物食品安全週報,18,3-4。
謝榮豐、鄭易昇、曾學碩(2008)。臺北市溫水游泳池游泳運動愛好者之參與動機、消費認知之研究。臺灣水域運動學報,1,19-34。
羅子寧(2011)。游泳池池水中消毒副產物生成特性之探討。未出版之碩士論文,國立臺灣大學公共學院環境衛生研究所,臺北市。
羅美棧(1979)。游泳池及海水浴場之衛生。國民體育季刊,11(2),4-11。
二、英文部分
Aggazzotti, G., Fantuzzi, G., Righi, E., & Predieri, G. (1995). Environmental and biological monitoring of chloroform in indoor swimming pools. Journal of Chromatography A, 710(1), 181-190.
Aggazzotti, G., Fantuzzi, G., Righi, E., & Predieri, G. (1998). Blood and breath analyses as biological indicators of exposure to trihalomethanes in indoor swimming pools. Science of the Total Environment, 217(1), 155-163.
Aggazzotti, G., Fantuzzi, G., Righi, E., Tartoni, P., Cassinadri, T., & Predieri, G. (1993). Chloroform in alveolar air of individuals attending indoor swimming pools. Archives of Environmental Health: An International Journal, 48(4), 250-254.
Aggazzotti, G., Fantuzzi, G., Tartoni, P. L., & Predieri, G. (1990). Plasma chloroform concentrations in swimmers using indoor swimming pools. Archives of Environmental Health: An International Journal, 45(3), 175-179.
Batterman, S., Zhang, L., & Wang, S. (2000). Quenching of chlorination disinfection by-product formation in drinking water by hydrogen peroxide. Water Research, 34(5), 1652-1658.
Bull, R. J., Birnbaum, L., Cantor, K. P., Rose, J. B., Butterworth, B. E., Pegram, R. E. X., & Tuomisto, J. (1995). Water chlorination: Essential process or cancer hazard. Fundamental and Applied Toxicology, 28(2), 155-166.
Bull, R. J., Sanchez, I. M., Nelson, M. A., Larson, J. L., & Lansing, A. J. (1990). Liver tumor induction in B6C3F1 mice by dichloroacetate and trichloroacetate. Toxicology, 63(3), 341-359.
Cammann, K., & Hübner, K. (1995). Trihalomethane concentrations in swimmers' and bath attendants' blood and urine after swimming or working in indoor swimming pools. Archives of Environmental Health: An International Journal, 50(1), 61-65.
Caro, J., & Gallego, M. (2007). Assessment of exposure of workers and swimmers to trihalomethanes in an indoor swimming pool. Environmental Science and Technology, 41(13), 4793-4798.
Caro, J., & Gallego, M. (2008a). Alveolar air and urine analyses as biomarkers of exposure to trihalomethanes in an indoor swimming pool. Environmental science & technology, 42(13), 5002-5007.
Caro, J., & Gallego, M. (2008b). Development of a sensitive thermal desorption method for the determination of trihalomethanes in humid ambient and alveolar air. Talanta, 76(4), 847-853.
Cardador, M. J., & Gallego, M. (2011). Haloacetic acids in swimming pools: swimmer and worker exposure. Environmental Science & Technology, 45(13), 5783-5790.
Catto, C., Sabrina, S., Ginette, C. T., Manuel, R., & Robert, T. (2012). Occurrence and spatial and temporal variations of disinfection by-products in the water and air of two indoor swimming pools. International Journal of Environmental Research and Public Health, 9(8), 2562-2586.
Chen, M. J., Lin, C. H., Duh, J. M., Chou, W. S., & Hsu, H. T. (2011). Development of multi-pathway probabilistic health risk assessment model for swimmers exposed to chloroform in indoor swimming pools. Journal of Hazardous Materials, 185(2), 1037-1044.
Cotruvo, J. A. (1981). Trihalomethanes (THMs) in drinking water. Environmental Science and Technology, 15(3), 268-274.
Erdinger, L., Kühn, K. P., Kirsch, F., Feldhues, R., Fröbel, T., Nohynek, B., & Gabrio, T. (2004). Pathways of trihalomethane uptake in swimming pools. International Journal of Hygiene and Environmental Health, 207(6), 571-575.
Fantuzzi, G., Righi, E., Predieri, G., Ceppelli, G., Gobba, F., & Aggazzotti, G. (2001). Occupational exposure to trihalomethanes in indoor swimming pools. The Science of the Total Environment, 264(3), 257-265.
Fantuzzi, G., Righi, E., Predieri, G., Giacobazzi, P., Mastroianni, K., & Aggazzotti, G. (2010). Prevalence of ocular, respiratory and cutaneous symptoms in indoor swimming pool workers and exposure to disinfection by-products (DBPs). International Journal of Environmental Research and Public Health, 7(4), 1379-1391.
Florentin, A., Hautemanière, A., & Hartemann, P. (2011). Health effects of disinfection by-products in chlorinated swimming pools. International Journal of Hygiene and Environmental Health, 214(6), 461-469.
Font-Ribera, L., Kogevinas, M., Zock, J. P., Gómez, F. P., Barreiro, E., Nieuwenhuijsen, M. J., ... & Villanueva, C. M. (2010). Short-term changes in respiratory biomarkers after swimming in a chlorinated pool. Retrieved January 2, 2015 from National Institute of Environmental Health Sciences on the World Wide Web: http://digital.csic.es/bitstream/10261/27630/1/ehp.1001961.pdf
Fuscoe, J. C., Afshari, A. J., George, M. H., DeAngelo, A. B., Tice, R. R., Salman, T., & Allen, J. W. (1996). In vivo genotoxicity of dichloroacetic acid: evaluation with the mouse peripheral blood micronucleus assay and the single cell gel assay. Environmental and Molecular Mutagenesis, 27(1), 1-9.
Giller, S., Le Curieux, F., Erb, F., & Marzin, D. (1997). Comparative genotoxicity of halogenated acetic acids found in drinking water. Mutagenesis, 12(5), 321-328.
Hoadley, A. W. & Gould, J. P. (1976). Disinfection. Journal of Water Pollution Control Fedration,48(6), 1166-1170.
Hsu, H. T., Chen, M. J., Lin, C. H., Chou, W. S., & Chen, J. H. (2009). Chloroform in indoor swimming-pool air: monitoring and modeling coupled with the effects of environmental conditions and occupant activities. Water Research, 43(15), 3693-3704.
Judd, S. J., & Black, S. H. (2000). Disinfection by-product formation in swimming pool waters: a simple mass balance. Water Research, 34(5), 1611-1619.
Judd, S. J., & Jeffrey, J. A. (1995). Trihalomethane formation during swimming pool water disinfection using hypobromous and hypochlorous acids. Water Research, 29(4), 1203-1206.
Kim, B. R., Anderson, J. E., Mueller, S. A., Gaines, W. A., & Kendall, A. M. (2002). Literature review - efficacy of various disinfectants against Legionella in water systems. Water Research, 36(18), 4433-4444.
Kim, H., Shim, J., & Lee, S. (2002). Formation of disinfection by-products in chlorinated swimming pool water. Chemosphere, 46(1), 123-130.
Knocke, W. R., West, S., & Hoehn, R. C. (1986). Effects of low temperature on the removal of trihalomethane precursors by coagulation. Journal (American Water Works Association), 78, 189-195.
Krasner, S. W., Richardson, S. D., & Thruston, Jr., A. D. (2002). The occurrence of disinfection by-products (DBPs) of health concern in drinking water: results of a nationwide DBP occurrence study. Retrieved December 13, 2013 from United States Environmental Protection Agency on the World Wide Web: www.epa.gov/athens/publications/reports/EPA_600_R02_068.pdf
Kraybill, H. F. (1980). Evaluation of public health aspects of carcinogenic/mutagenic biorefractories in drinking water. Preventive Medicine, 9(2), 212-218.
Lee, J. F., Liao, P. M., Tseng, D. H., & Wen, P. T. (1998). Behavior of Organic Polymers in Drinking Water Purification. Chemosphere, 37(6), pp.1045-1061
Lee, J., Ha, K. T., & Zoh, K. D. (2009). Characteristics of trihalomethane (THM) production and associated health risk assessment in swimming pool waters treated with different disinfection methods. Science of the Total Environment, 407(6), 1990-1993.
Lee, S. C., Guo, H., Lam, S. M. J., & Lau, S. L. A. (2004). Multipathway risk assessment on disinfection by-products of drinking water in Hong Kong. Environmental Research, 94(1), 47-56.
Lindstrom, A. B., Pleil, J. D., & Berkoff, D. C. (1997). Alveolar breath sampling and analysis to assess trihalomethane exposures during competitive swimming training. Environmental Health Perspectives, 105(6), 636.
McGeehin, M. A., Reif, J. S., Becher, J. C., & Mangione, E. J. (1993). Case-control study of bladder cancer and water disinfection methods in Colorado. American Journal of Epidemiology, 138(7), 492-501.
Merck KGaA. (2011). TOC cell test. Darmstadt, Germany: Author.
Morris, R. D., Audet, A. M., Angelillo, I. F., Chalmers, T. C., & Mosteller, F. (1992). Chlorination, chlorination by-products and cancer: a meta-analysis. American Journal of Public Health, 82(7), 955-963.
National Toxicology Program. (1985). NTP toxicology and carcinogenesis studies of chlorodibromomethane (CAS No. 124-48-1) in F344/N rats and B6C3F1 mice (gavage studies). National Toxicology Program Technical Report Series, 282, 1.
National Toxicology Program. (1987). NTP toxicology and carcinogenesis studies of bromodichloromethane (CAS No. 75-27-4) in F344/N rats and B6C3F1 mice (gavage studies). National Toxicology Program Technical Report Series, 321, 1.
National Toxicology Program. (1989). NTP toxicology and carcinogenesis studies of tribromomethane (bromoform) (CAS No. 75-25-2) in F344/N rats and B6C3F1 mice (gavage studies). National Toxicology Program Technical Report Series, 350, 1.
Office of Environmental Health Hazard Assessment. (2009). OEHHA cancer potency values as of July 21, 2009. Retrieved December 6, 2013 from Office of Environmental Health Hazard Assessment on the World Wide Web: http://oehha.ca.gov/risk/pdf/tcdb072109alpha.pdf
Rodricks, J. V., Brett, S. M., & Wrenn, G. C. (1987). Significant risk decisions in federal regulatory agencies. Regulatory Toxicology and Pharmacology, 7(3), 307-320.
Shin, D., Chung, Y., Choi, Y., Kim, J., Park, Y., & Kum, H. (1999). Assessment of disinfection by-products in drinking water in korea. Journal of Exposure Analysis and Environmental Epidemiology, 9(3), 192-199.
Singer, P. (1999). Humic substances as precursors for potentially harmful disinfection by-products. Water Science and Technology, 40(9), 25-30.
Smith, M. K., Randall, J. L., Read, E. J., & Stober, J. A. (1992). Developmental toxicity of dichloroacetate in the rat. Teratology, 46(3), 217-223.
The Risk Assessment Information System. (2013a). Chemical profile tool. Retrieved December 31, 2013 from The Risk Assessment Information System on the World Wide Web: http://rais.ornl.gov/tools/profile.php
The Risk Assessment Information System. (2013b). Parameters of chemicals. Retrieved December 27, 2013 from The Risk Assessment Information System on the World Wide Web: http://rais.ornl.gov/cgi-bin/tools/TOX_search?select=chem_spef
The Risk Assessment Information System. (2013c). Chemical toxicity values. Retrieved December 30, 2013 from The Risk Assessment Information System on the World Wide Web: http://rais.ornl.gov/cgi-bin/tools/TOX_search?select=chem
Theiss, J. C., Stoner, G. D., Shimkin, M. B., & Weisbuger, E. K. (1997). Test for carcinogenicity of organic contaminants of United States drinking waters by pulmonary tumor response in strain a mice. Cancer Research, 37(8 part 1), 2717-2720.
Ueno, H., Moto, T., Sayato, Y., & Nakamuro, K. (1996). Disinfection by-products in the chlorination of organic nitrogen compounds: by-products from kynurenine. Chemosphere, 33(8), 1425-1433.
United States Environmental Protection Agency. (1999). Compendium of methods for the determination of toxic organic compounds in ambient air. Retrieved November 29, 2013 from United States Environmental Protection Agency on the World Wide Web: http://www.epa.gov/ttnamti1/files/ambient/airtox/to-17r.pdf
United States Environmental Protection Agency. (2003). Swimmer exposure assessment model (SWIMODEL) version 3.0. Retrieved November 22, 2013 from United States Environmental Protection Agency on the World Wide Web: http://www.epa.gov/oppad001/swimodelusersguide.pdf
Uyak, V. (2006). Multi-pathway risk assessment of trihalomethanes exposure in Istanbul drinking water supplies. Environment International, 32(1), 12-21.
Williams, D. T., LeBel, G. L., & Benoit, F. M. (1997). Disinfection by-products in Canadian drinking water. Chemosphere, 34(2), 299-316.
Xu, X., Mariano, T. M., Laskin, J. D., & Weisel, C. P. (2002). Percutaneous absorption of trihalomethanes, haloacetic acids, and haloketones. Toxicology and Applied Pharmacology, 184(1), 19-26.)

下載圖示
QR CODE