簡易檢索 / 詳目顯示

研究生: 江奕臻
Jiang, Yi-Zhen
論文名稱: 四羧酸配位基金屬有機骨架從無序化到結晶態的快速結構轉變以及微量苯從環己烷中吸附分離應用
Rapid Disorder to Crystalline Transition and Adsorption Separation of Trace Benzene from Cyclohexane of Tetracarboxylate Based Metal-Organic Frameworks
指導教授: 林嘉和
Lin, Chia-Her
口試委員: 林嘉和
Lin, Chia-Her
陳重佑
Chen, Chong-You
蔡振彥
Tsai, Chen-Yen
楊仲準
Yang, Chun-Chuen
口試日期: 2024/06/03
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2024
畢業學年度: 113
語文別: 中文
論文頁數: 146
中文關鍵詞: 金屬有機骨架雙溶劑置換加熱抽真空結晶化微量苯移除
英文關鍵詞: Metal-Organic Frameworks, Two solvent exchange, Heat under vacuum, Crystallization, Trace benzene removal
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202401948
論文種類: 學術論文
相關次數: 點閱:468下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

近年來金屬有機骨架 (Metal-organic frameworks, MOFs) 材料的研究上顯示,結晶化的MOF是由成核、非序化再到結晶化的。由於結晶過程中不同的狀態會影響成核的速率以及結構的網絡,因此了解其中的生長階段對於想要針對特定應用的MOF的合成開發顯得非常重要。然而,MOF由非序化 (Disordered) 轉變到結晶態 (Crystalline) 的過程,並未見過往的研究提出任何機制探討。
本研究分為兩個部分,第一部份想探討MOF非序化轉變到結晶化的關鍵原因。承續實驗室已經開發的溶劑脫附誘導非序化及缺陷結構,可快速驅動MOF結晶成有序孔洞結構,本研究將往更廣的面向去討論不同四羧酸配位基的MOF—NU-1000(Zr)、NU-901(Zr)以及MFM-300(M) (M=Al、Ga、Sc、Fe),是否也具有類似的結構轉變現象。透過粉末X射線繞射 (PXRD)、場發射電子顯微鏡 (FE-SEM) 和比表面積及孔隙分析儀,本研究證明以雙溶劑交換 (Two solvents exchange, TOSE) 及加熱抽真空 (Heat under vacuum, HEVA)手法處理的產物依然保有與文獻記載相似的MOF結構、形貌及吸附性能。並透過結晶度計算以及自動電位滴定儀的實驗結果分析,證實了MOF晶格從初合成的非序化結構到因溶劑脫附誘發快速結晶化的過程。本研究更進一步大幅縮短了合成的時間,找出MOF能保持高度結晶性最佳的轉換方法。
第二部分中,本實驗探討了如何在液相環境中將微量苯從環己烷中吸附移除。目前,全球生產的環己烷中約有80 ~ 85 %是透過苯的還原加氫反應獲得的,該反應會產生環己烷和殘留苯的混合物。由於苯具有相當高的毒性,並會對人體產生短期或長期的健康影響,因此生成環己烷時必須先純化,除去未反應的苯。根據目前市面上化學品公司的表明,環己烷的成品通常含有低於50 ppm的苯。本研究選用MFM-300(Sc)及MFM-300(Ga)作為吸附劑,其孔徑大小約為6.5 Å,具有四羧酸配位基與金屬團簇結合形成的通道型結構,可以有效的將苯捕捉在孔洞中,並且產生大量主體客體或客體客體之間的 π - π 電子作用力。本研究透過氣相層析質譜儀 (GC-MS),分析攪拌吸附後環己烷溶液中微量苯的殘留量。結果表明,在苯濃度約為50 ppm左右的環己烷中加入MFM-300(Sc)或是MFM-300(Ga)作為吸附劑,經過七至八次吸附循環後可以有效的降低苯的含量至將近0 ppm。

In recent years, literature on metal-organic frameworks (MOFs) materials has indicated that the MOFs nucleate through phase separation, condensation, and crystallization. However, in previous studies, no one has investigated the detailed mechanism of MOFs crystallization from disordered intermediate transform to the crystalline state. Here, we selected tetracarboxylate based MOFs, specifically NU-1000(Zr), NU-901(Zr), and MFM-300(M) (M=Al, Ga, Sc, Fe), to investigate their synthesis process with characterization by using techniques such as powder X-ray diffraction (PXRD), field emission electron microscopy (FE-SEM), and nitrogen gas adsorption. The study reveals that the post-activation steps by two solvent exchanges (TOSE) and heating under vacuum (HEVA) are crucial factors driving rapid transformation of disordered MOFs clusters to a crystalline state. Specifically, we indicates that the structural transformations and the reduction in uncoordinated linker ratio at each step through titration experiment. Moreover, we significantly shortens the reaction time, demonstrating that TOSE-HEVA treatments rapidly accelerate MOFs crystallization while maintaining desired properties. With the strong π-π interaction between host and guest from their considerable amount of aromatic ring, tetracarboxylate based MOFs also could be a promising material for capturing benzene. The research show that using MFM-300(Sc) powder as an adsorbent to cyclohexane, which initially contained approximately 50 ppm of benzene, demonstrates an effective reduction of benzene content to 0 ppm after 8 cycles. This reasearch elucidates the key reasons for MOFs crystallization, offers a promising route for efficient MOFs synthesis, and makes MOFs attractive materials for application in trace benzene removal.

第一章 緒論 1 1-1 前言 1 1-2 MOF結構的演進 4 1-3 MOF缺陷 6 1-4 MOF結晶化現象 9 1-5 MOF的苯與環己烷分離應用 10 1-6 四羧酸MOF介紹 15 1-7 研究動機 32 第二章 實驗與儀器 35 2-1 實驗藥品 35 2-2 儀器機型和測量簡介 40 2-3 結晶度指數 47 2-4 電位酸鹼滴定法 54 2-5 實驗合成方法 57 2-6 MOF材料的鑑定流程 69 第三章 實驗結果與討論 71 3-1 無序化轉為結晶態 71 3-2 結晶化過程中的結構轉變 111 3-3 微量苯從環己烷中吸附分離應用 125 第四章 結論與展望 133 參考文獻 135 附錄 S1

1. Valtchev, V.; Tosheva, L. Porous Nanosized Particles: Preparation, Properties, and Applications. Chem. Rev. 2013, 6734–6760.
2. Van Speybroeck, V.; Hemelsoet, K.; Joos, L.; Waroquier, M.; Bell, R. G.; Catlow, C. R. A. Advances in Theory and Their Application within the Field of Zeolite Chemistry. Chem. Soc. Rev. 2015, 7044–7111.
3. Yaghi, O. M.; Li, H. Hydrothermal Synthesis of a Metal-Organic Framework Containing Large Rectangular Channels. J. Am. Chem. Soc. 1995, 117 (41), 10401–10402.
4. Furukawa, H.; Ko, N.; Go, Y. B.; Aratani, N.; Choi, S. B.; Choi, E.; Yazaydin, A. Ö.; Snurr, R. Q.; O’Keeffe, M.; Kim, J.; Yaghi, O. M. Ultrahigh Porosity in Metal-Organic Frameworks. Science 2010, 329 (5990), 424–428.
5. Farha, O. K.; Eryazici, I.; Jeong, N. C.; Hauser, B. G.; Wilmer, C. E.; Sarjeant, A. A.; Snurr, R. Q.; Nguyen, S. T.; Yazaydin, A. Ö.; Hupp, J. T. Metal-Organic Framework Materials with Ultrahigh Surface Areas: Is the Sky the Limit? J. Am. Chem. Soc. 2012, 134 (36), 15016–15021.
6. Towsif Abtab, S. M.; Alezi, D.; Bhatt, P. M.; Shkurenko, A.; Belmabkhout, Y.; Aggarwal, H.; Weseliński, Ł. J.; Alsadun, N.; Samin, U.; Hedhili, M. N.; Eddaoudi, M. Reticular Chemistry in Action: A Hydrolytically Stable MOF Capturing Twice Its Weight in Adsorbed Water. Chem. 2018, 4 (1), 94–105.
7. Chen, Z.; Li, P.; Anderson, R.; Wang, X.; Zhang, X.; Robison, L.; Redfern, L. R.; Moribe, S.; Islamoglu, T.; Gómez-Gualdrón, D. A.; Yildirim, T.; Stoddart, J. F.; Farha, O. K. Balancing Volumetric and Gravimetric Uptake in Highly Porous Materials for Clean Energy. Science 2020, 368 (6488), 297–303.
8. Lu, W.; Wei, Z.; Gu, Z. Y.; Liu, T. F.; Park, J.; Park, J.; Tian, J.; Zhang, M.; Zhang, Q.; Gentle, T.; Bosch, M.; Zhou, H. C. Tuning the Structure and Function of Metal-Organic Frameworks via Linker Design. Chem. Soc. Rev. 2014, 43, 5561–5593.
9. Chen, L.; Luque, R.; Li, Y. Controllable Design of Tunable Nanostructures inside Metal-Organic Frameworks. Chem. Soc. Rev. 2017, 46, 4614–4630.
10. Li, J. R.; Kuppler, R. J.; Zhou, H. C. Selective Gas Adsorption and Separation in Metal-Organic Frameworks. Chem. Soc. Rev. 2009, 38 (5), 1477–1504.
11. Sculley, J.; Yuan, D.; Zhou, H. C. The Current Status of Hydrogen Storage in Metal-Organic Frameworks - Updated. Energy Environ. Sci. 2011, 4, 2721–2735.
12. Chen, H.; Liao, P.; Mendonca, M. L.; Snurr, R. Q. Insights into Catalytic Hydrolysis of Organophosphate Warfare Agents by Metal-Organic Framework NU-1000. J. Phys. Chem. C 2018, 122 (23). 12362–12368.
13. Quijia, C. R.; Lima, C.; Silva, C.; Alves, R. C.; Frem, R.; Chorilli, M. Application of MIL-100(Fe) in Drug Delivery and Biomedicine. J. Drug Deliv. Technol. 2021, 122 (23). 12362–12368.
14. Deneff, J. I.; Butler, K. S.; Rohwer, L. E. S.; Pearce, C. J.; Valdez, N. R.; Rodriguez, M. A.; Luk, T. S.; Sava Gallis, D. F. Encoding Multilayer Complexity in Anti-Counterfeiting Heterometallic MOF-Based Optical Tags. Angew. Chem. Int. Ed. 2021, 61, 102217.
15. Liu, B.; Thoi, V. S. Improving Charge Transfer in Metal-Organic Frameworks through Open Site Functionalization and Porosity Selection for Li-S Batteries. Chem. Mater. 2020, 32 (19), 8450–8459
16. Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M. The Chemistry and Applications of Metal-Organic Frameworks. Science 2013, 341 (6149), 1230444.
17. Han, J.; He, X.; Liu, J.; Ming, R.; Lin, M.; Li, H.; Zhou, X.; Deng, H. Determining Factors in the Growth of MOF Single Crystals Unveiled by in Situ Interface Imaging. Chem. 2022, 8 (6), 1637–1657.
18. Wang, T. C.; Vermeulen, N. A.; Kim, I. S.; Martinson, A. B. F.; Fraser Stoddart, J.; Hupp, J. T.; Farha, O. K. Scalable Synthesis and Post-Modification of a Mesoporous Metal-Organic Framework Called NU-1000. Nat. Protoc. 2016, 11 (1), 149–162.
19. Teo, W. L.; Zhou, W.; Qian, C.; Zhao, Y. Industrializing Metal–Organic Frameworks: Scalable Synthetic Means and Their Transformation into Functional Materials. Materials Today. 2021, 170–186.
20. Hara, Y.; Kanamori, K.; Nakanishi, K. Self-Assembly of Metal–Organic Frameworks into Monolithic Materials with Highly Controlled Trimodal Pore Structures. Angew. Chem. Int. Ed. 2019,
58 (52), 4235–4239.
21. Deng, J.; Dai, Z.; Hou, J.; Deng, L. Morphologically Tunable MOF Nanosheets in Mixed Matrix Membranes for CO2 Separation. Chem. Mater. 2020, 32 (10), 4174–4184.
22. Kim, J. O.; Kim, J. Y.; Lee, J. C.; Park, S.; Moon, H. R.; Kim, D. P. Versatile Processing of Metal-Organic Framework-Fluoropolymer Composite Inks with Chemical Resistance and Sensor Applications. ACS Appl. Mater. Interfaces. 2019, 11 (4), 4585–4392.
23. Sun, D.; Adiyala, P. R.; Yim, S. J.; Kim, D. P. Pore-Surface Engineering by Decorating Metal-Oxo Nodes with Phenylsilane to Give Versatile Super-Hydrophobic Metal–Organic Frameworks (MOFs). Angew. Chem. Int. Ed. 2019, 58 (22), 7405–7409.
24. Kitagawa, S.; Kondo, M. Functional Micropore Chemistry of Crystalline Metal Complex-Assembled Compounds. Bull.Chem.Soc.Jpn 1998, 71 (8), 1739–1753.
25. Horike, S.; Shimomura, S.; Kitagawa, S. Soft Porous Crystals. Nat. Chem. 2009, 1, 695–704.
26. Bousquet, D.; Coudert, F. X.; Fossati, A. G. J.; Neimark, A. V.; Fuchs, A. H.; Boutin, A. Adsorption Induced Transitions in Soft Porous Crystals: An Osmotic Potential Approach to Multistability and Intermediate Structures. J. Chem. Phys. 2013, 138 (17), 174706.
27. Liu, J.; Chen, L.; Cui, H.; Zhang, J.; Zhang, L.; Su, C. Y. Applications of Metal-Organic Frameworks in Heterogeneous Supramolecular Catalysis. Chem. Soc. Rev. 2014, 6011–6061.
28. Horike, S.; Nagarkar, S. S.; Ogawa, T.; Kitagawa, S. A New Dimension for Coordination Polymers and Metal–Organic Frameworks: Towards Functional Glasses and Liquids. Angew. Chem. Int. Ed. 2020, 6652–6664.
29. Zhang, S. Y.; Jensen, S.; Tan, K.; Wojtas, L.; Roveto, M.; Cure, J.; Thonhauser, T.; Chabal, Y. J.; Zaworotko, M. J. Modulation of Water Vapor Sorption by a Fourth-Generation Metal-Organic Material with a Rigid Framework and Self-Switching Pores. J. Am. Chem. Soc. 2018, 140 (39), 12545–12552.
30. Kitagawa, S. Future Porous Materials. Acc. Chem. Res. 2017, 514–516.
31. Susumu Kitagawa. Definition and Classification of PCP/MOF. Retrieved from https://www.kitagawa.icems.kyoto-u.ac.jp/blog/2020/08/28/definition-and-classification/.
32. Stefan Kaskel. The Chemistry of Metal–Organic Frameworks. Synthesis, Characterization, and Applications, 2nd ed.; 2016, 795–807.
33. Fang, Z.; Bueken, B.; De Vos, D. E.; Fischer, R. A. Defect-Engineered Metal-Organic Frameworks. Angew. Chem. Int. Ed. 2015, 54 (25), 7234–7254.
34. Chen, Y.; Li, S.; Pei, X.; Zhou, J.; Feng, X.; Zhang, S.; Cheng, Y.; Li, H.; Han, R.; Wang, B. A Solvent-Free Hot-Pressing Method for Preparing Metal-Organic-Framework Coatings. Angew. Chem. Int. Ed. 2016, 55 (10), 3419–3423.
35. Dissegna, S.; Epp, K.; Heinz, W. R.; Kieslich, G.; Fischer, R. A. Defective Metal-Organic Frameworks. Adv. Mater. 2018, 30 (37), 1704501.
36. Wang, Z.; Schmalbach, K. M.; Combs, R. L.; Chen, Y.; Penn, R. L.; Mara, N. A.; Stein, A. Effects of Phase Purity and Pore Reinforcement on Mechanical Behavior of NU-1000 and Silica-Infiltrated NU-1000 Metal-Organic Frameworks. ACS Appl. Mater. Interfaces. 2020, 12 (44), 49971–49981 .
37. Lo, S. H.; Feng, L.; Tan, K.; Huang, Z.; Yuan, S.; Wang, K. Y.; Li, B. H.; Liu, W. L.; Day, G. S.; Tao, S.; Yang, C. C.; Luo, T. T.; Lin, C. H.; Wang, S. L.; Billinge, S. J. L.; Lu, K. L.; Chabal, Y. J.; Zou, X.; Zhou, H. C. Rapid Desolvation-Triggered Domino Lattice Rearrangement in a Metal–Organic Framework. Nat. Chem. 2020, 12 (1), 90–97.
38. Rimer, J. D.; Tsapatsis, M. Nucleation of Open Framework Materials: Navigating the Voids. MRS Bull. 2016, 393–398.
39. Van Vleet, M. J.; Weng, T.; Li, X.; Schmidt, J. R. In Situ, Time-Resolved, and Mechanistic Studies of Metal-Organic Framework Nucleation and Growth. Chem. Rev. 2018, 3681–3721.
40. Liu, X.; Chee, S. W.; Raj, S.; Sawczyk, M.; Král, P.; Mirsaidov, U. Three-Step Nucleation of Metal–Organic Framework Nanocrystals. PNAS. 2021, 118 (10), e2008880118.
41. Mukherjee, S.; Sensharma, D.; Qazvini, O. T.; Dutta, S.; Macreadie, L. K.; Ghosh, S. K.; Babarao, R. Advances in Adsorptive Separation of Benzene and Cyclohexane by Metal-Organic Framework Adsorbents. Coord. Chem. Rev. 2021, 213852.
42. Salleh, N.; Yhaya, M. F.; Ghafar, N. A.; Muslim, N. Z. M.; Hamzah, N. A. Occupational-Related Disease to the Toxicity of Benzene
Derivatives Exposure among Working Populations: A Review. MJMHS 2021, 177–183.
43. González-Galán, C.; Luna-Triguero, A.; Vicent-Luna, J. M.; Zaderenko, A. P.; Sławek, A.; Sánchez-de-Armas, R.; Calero, S. Exploiting the π-Bonding for the Separation of Benzene and Cyclohexane in Zeolites. J. Chem. Eng. 2020, 398, 125678.
44. Han, Y.; Chen, Y.; Ma, Y.; Bailey, J.; Wang, Z.; Lee, D.; Sheveleva, A. M.; Tuna, F.; McInnes, E. J. L.; Frogley, M. D.; Day, S. J.; Thompson, S. P.; Spencer, B. F.; Nikiel, M.; Manuel, P.; Crawshaw, D.; Schröder, M.; Yang, S. Control of the Pore Chemistry in Metal-Organic Frameworks for Efficient Adsorption of Benzene and Separation of Benzene/Cyclohexane. Chem. 2023, 9 (3), 739–754.
45. Shimomura, S.; Horike, S.; Matsuda, R.; Kitagawa, S. Guest-Specific Function of a Flexible Undulating Channel in a 7,7,8,8-Tetracyano-p-Quinodimethane Dimer-Based Porous Coordination Polymer. J. Am. Chem. Soc. 2007, 129 (36), 10990–10991.
46. Poryvaev, A. S.; Yazikova, A. A.; Polyukhov, D. M.; Fedin, M. V. Ultrahigh Selectivity of Benzene/Cyclohexane Separation by ZIF-8 Framework: Insights from Spin-Probe EPR Spectroscopy. Micropor. Mesopor. Mat. 2022, 330, 111564.
47. He, T.; Kong, X. J.; Bian, Z. X.; Zhang, Y. Z.; Si, G. R.; Xie, L. H.; Wu, X. Q.; Huang, H.; Chang, Z.; Bu, X. H.; Zaworotko, M. J.; Nie, Z. R.; Li, J. R. Trace Removal of Benzene Vapour Using Double-Walled Metal–Dipyrazolate Frameworks. Nat. Mater. 2022, 21 (6), 689–695.
48. Hu, L.; Wu, W.; Gong, L.; Zhu, H.; Jiang, L.; Hu, M.; Lin, D.; Yang, K. A Novel Aluminum-Based Metal-Organic Framework with Uniform Micropores for Trace BTEX Adsorption. Angew. Chem. Int. Ed. 2023, 62 (12), e202215296.
49. Shimomura, S.; Matsuda, R.; Kitagawa, S. Flexibility of Porous Coordination Polymers Strongly Linked to Selective Sorption Mechanism. Chem. Mater. 2010, 22 (14), 4129–4131.
50. Hijikata, Y.; Horike, S.; Sugimoto, M.; Sato, H.; Matsuda, R.; Kitagawa, S. Relationship between Channel and Sorption Properties in Coordination Polymers with Interdigitated Structures. Chem. Eur. J. 2011, 17 (18), 5138–5144.
51. Sapianik, A. A.; Kovalenko, K. A.; Samsonenko, D. G.; Barsukova, M. O.; Dybtsev, D. N.; Fedin, V. P. Exceptionally Effective
Benzene/Cyclohexane Separation Using a Nitro-Decorated Metal-Organic Framework. Chem. Comm. 2020, 56 (59), 8241–8244.
52. Li, G.; Zhu, C.; Xi, X.; Cui, Y. Selective Binding and Removal of Organic Molecules in a Flexible Polymeric Material with Stretchable Metallosalen Chains. Chem. Comm. 2009, 16, 2118–2120.
53. Xie, L. H.; Liu, X. M.; He, T.; Li, J. R. Metal-Organic Frameworks for the Capture of Trace Aromatic Volatile Organic Compounds. Chem 2018, 4 (8), 1911–1927.
54. Hu, L.; Wu, W.; Hu, M.; Jiang, L.; Lin, D.; Wu, J.; Yang, K. Double-Walled Al-Based MOF with Large Microporous Specific Surface Area for Trace Benzene Adsorption. Nat. Commun. 2024, 15 (1), 3204.
55. Procopio, E. Q.; Linares, F.; Montoro, C.; Colombo, V.; Maspero, A.; Barea, E.; Navarro, J. A. R. Cation-Exchange Porosity Tuning in Anionic Metal-Organic Frameworks for the Selective Separation of Gases and Vapors and for Catalysis. Angew. Chem. Int. Ed. 2010, 49 (40), 7308–7311.
56. Wang, J. H.; Luo, D.; Li, M.; Li, D. Local Deprotonation Enables Cation Exchange, Porosity Modulation, and Tunable Adsorption Selectivity in a Metal-Organic Framework. Cryst. Growth Des. 2017, 17 (6), 3387–3394.
57. Lysova, A. A.; Samsonenko, D. G.; Dorovatovskii, P. V.; Lazarenko, V. A.; Khrustalev, V. N.; Kovalenko, K. A.; Dybtsev, D. N.; Fedin, V. P. Tuning the Molecular and Cationic Affinity in a Series of Multifunctional Metal-Organic Frameworks Based on Dodecanuclear Zn(II) Carboxylate Wheels. J. Am. Chem. Soc. 2019, 141 (43), 17260–17269.
58. Ye, C. R.; Wang, W. J.; Chen, W.; Xiao, Y.; Zhang, H. F.; Dai, B. L.; Chen, S. H.; Wu, X. D.; Li, M.; Huang, X. C. Harnessing Shape Complementarity for Upgraded Cyclohexane Purification through Adaptive Bottlenecked Pores in an Imidazole-Containing MOF. Angew. Chem. Int. Ed. 2021, 60 (44), 23590–23595.
59. Devic, T.; Serre, C. High Valence 3p and Transition Metal Based MOFs. Chem. Soc. Rev. 2014, 6097–6115.
60. Yuan, S.; Feng, L.; Wang, K.; Pang, J.; Bosch, M.; Lollar, C.; Sun, Y.; Qin, J.; Yang, X.; Zhang, P.; Wang, Q.; Zou, L.; Zhang, Y.; Zhang, L.; Fang, Y.; Li, J.; Zhou, H. C. Stable Metal–Organic Frameworks:
Design, Synthesis, and Applications. Adv. Mater. 2018, 1704303.
61. Ibarra, I. A.; Yang, S.; Lin, X.; Blake, A. J.; Rizkallah, P. J.; Nowell, H.; Allan, D. R.; Champness, N. R.; Hubberstey, P.; Schröder, M. Highly Porous and Robust Scandium-Based Metal-Organic Frameworks for Hydrogen Storage. Chem. Comm. 2011, 47 (29), 8304–8306.
62. Yang, S.; Sun, J.; Ramirez-Cuesta, A. J.; Callear, S. K.; David, W. I. F.; Anderson, D. P.; Newby, R.; Blake, A. J.; Parker, J. E.; Tang, C. C.; Schröder, M. Selectivity and Direct Visualization of Carbon Dioxide and Sulfur Dioxide in a Decorated Porous Host. Nat. Chem. 2012, 4 (11), 887–948.
63. Krap, C. P.; Newby, R.; Dhakshinamoorthy, A.; García, H.; Cebula, I.; Easun, T. L.; Savage, M.; Eyley, J. E.; Gao, S.; Blake, A. J.; Lewis, W.; Beton, P. H.; Warren, M. R.; Allan, D. R.; Frogley, M. D.; Tang, C. C.; Cinque, G.; Yang, S.; Schröder, M. Enhancement of CO2 Adsorption and Catalytic Properties by Fe-Doping of [Ga2(OH)2(L)] (H4L = Biphenyl-3,3′,5,5′-Tetracarboxylic Acid), MFM-300(Ga2). Inorg. Chem. 2016, 55 (3), 1076–1088.
64. Han, X.; Lu, W.; Chen, Y.; Da Silva, I.; Li, J.; Lin, L.; Li, W.; Sheveleva, A. M.; Godfrey, H. G. W.; Lu, Z.; Tuna, F.; McInnes, E. J. L.; Cheng, Y.; Daemen, L. L.; Mcpherson, L. J. M. C.; Teat, S. J.; Frogley, M. D.; Rudić, S.; Manuel, P.; Ramirez-Cuesta, A. J.; Yang, S.; Schröder, M. High Ammonia Adsorption in MFM-300 Materials: Dynamics and Charge Transfer in Host-Guest Binding. J. Am. Chem. Soc. 2021, 143 (8), 3153–3161.
65. Liu, J. X.; Li, J.; Tao, W. Q.; Li, Z. 3.Al-Based Metal-Organic Framework MFM-300 and MIL-160 for SO2 Capture: A Molecular Simulation Study. Fluid Phase Equilibria 2021, 536, 112936.
66. Carter, J. H.; Morris, C. G.; Godfrey, H. G. W.; Day, S. J.; Potter, J.; Thompson, S. P.; Tang, C. C.; Yang, S.; Schröder, M. Long-Term Stability of MFM-300(Al) toward Toxic Air Pollutants. ACS Appl. Mater. Interfaces. 2020, 12 (38), 42949–42954.
67. López-Cervantes, V. B.; Obeso, J. L.; Yañez-Aulestia, A.; Islas-Jácome, A.; Leyva, C.; González-Zamora, E.; Sánchez-González, E.; Ibarra, I. A. MFM-300(Sc): A Chemically Stable Sc(Iii)-Based MOF Material for Multiple Applications. Chem. Comm. 2023, 59 (69), 10343–10359.
68. Kamali, K.; Joseph, B.; Rajaji, V.; Narayana, C. Pressure-Induced
Loss of Long-Range Structural Order in MFM-300(Al): An X-Ray Diffraction and Raman Spectroscopic Study. J. Phys. Chem. C 2021, 125 (28), 15472–15478.
69. Li, X.; Wang, J.; Bai, N.; Zhang, X.; Han, X.; da Silva, I.; Morris, C. G.; Xu, S.; Wilary, D. M.; Sun, Y.; Cheng, Y.; Murray, C. A.; Tang, C. C.; Frogley, M. D.; Cinque, G.; Lowe, T.; Zhang, H.; Ramirez-Cuesta, A. J.; Thomas, K. M.; Bolton, L. W.; Yang, S.; Schröder, M. Refinement of Pore Size at Sub-Angstrom Precision in Robust Metal–Organic Frameworks for Separation of Xylenes. Nat. Commun. 2020, 11 (1).
70. Peralta, R. A.; Lyu, P.; López-Olvera, A.; Obeso, J. L.; Leyva, C.; Jeong, N. C.; Ibarra, I. A.; Maurin, G. Switchable Metal Sites in Metal–Organic Framework MFM-300(Sc): Lewis Acid Catalysis Driven by Metal–Hemilabile Linker Bond Dynamics. Angew. Chem. Int. Ed. 2022, 61 (48), e202210857.
71. Obeso, J. L.; López-Olvera, A.; Flores, C. V.; Peralta, R. A.; Ibarra, I. A.; Leyva, C. Gas-Phase Organometallic Catalysis in MFM-300(Sc) Provided by Switchable Dynamic Metal Sites. Chem. Comm. 2023, 59 (22), 3273–3276.
72. Luo, T.; Wang, Z.; Han, X.; Chen, Y.; Iuga, D.; Lee, D.; An, B.; Xu, S.; Kang, X.; Tuna, F.; McInnes, E. J. L.; Hughes, L.; Spencer, B. F.; Schröder, M.; Yang, S. Efficient Photocatalytic Reduction of CO2 Catalyzed by the Metal–Organic Framework MFM-300(Ga). CCS Chemistry 2022, 4 (8), 2560–2569.
73. Zhang, X.; Da Silva, I.; Godfrey, H. G. W.; Callear, S. K.; Sapchenko, S. A.; Cheng, Y.; Vitórica-Yrezábal, I.; Frogley, M. D.; Cinque, G.; Tang, C. C.; Giacobbe, C.; Dejoie, C.; Rudić, S.; Ramirez-Cuesta, A. J.; Denecke, M. A.; Yang, S.; Schröder, M. Confinement of Iodine Molecules into Triple-Helical Chains within Robust Metal-Organic Frameworks. J. Am. Chem. Soc. 2017, 139 (45), 16289–16296.
74. Ma, Y.; Han, X.; Xu, S.; Li, Z.; Lu, W.; An, B.; Lee, D.; Chansai, S.; Sheveleva, A. M.; Wang, Z.; Chen, Y.; Li, J.; Li, W.; Cai, R.; da Silva, I.; Cheng, Y.; Daemen, L. L.; Tuna, F.; McInnes, E. J. L.; Hughes, L.; Manuel, P.; Ramirez-Cuesta, A. J.; Haigh, S. J.; Hardacre, C.; Schröder, M.; Yang, S. Direct Conversion of Methane to Ethylene and Acetylene over an Iron-Based Metal-Organic Framework. J. Am. Chem. Soc. 2023, 145 (38), 20792–20800.
75. Mondloch, J. E.; Bury, W.; Fairen-Jimenez, D.; Kwon, S.; Demarco,
E. J.; Weston, M. H.; Sarjeant, A. A.; Nguyen, S. T.; Stair, P. C.; Snurr, R. Q.; Farha, O. K.; Hupp, J. T. Vapor-Phase Metalation by Atomic Layer Deposition in a Metal-Organic Framework. J. Am. Chem. Soc. 2013, 135 (28), 10294–10297.
76. Abazari, R.; Sanati, S.; Bajaber, M. A.; Javed, M. S.; Junk, P. C.; Nanjundan, A. K.; Qian, J.; Dubal, D. P. Design and Advanced Manufacturing of NU-1000 Metal–Organic Frameworks with Future Perspectives for Environmental and Renewable Energy Applications. Small 2023, 2306353.
77. Kinik, F. P.; Ortega-Guerrero, A.; Ongari, D.; Ireland, C. P.; Smit, B. Pyrene-Based Metal Organic Frameworks: From Synthesis to Applications. Chem. Soc. Rev. 2021, 3143–3177.
78. Islamoglu, T.; Otake, K. I.; Li, P.; Buru, C. T.; Peters, A. W.; Akpinar, I.; Garibay, S. J.; Farha, O. K. Revisiting the Structural Homogeneity of NU-1000, a Zr-Based Metal-Organic Framework. Cryst. Eng. Comm. 2018, 20 (39), 5913–5918.
79. Van De Voorde, B.; Stassen, I.; Bueken, B.; Vermoortele, F.; De Vos, D.; Ameloot, R.; Tan, J. C.; Bennett, T. D. Improving the Mechanical Stability of Zirconium-Based Metal-Organic Frameworks by Incorporation of Acidic Modulators. J. Mater. Chem. A. 2015, 3 (4), 1737–1742.
80. Webber, T. E.; Liu, W. G.; Desai, S. P.; Lu, C. C.; Truhlar, D. G.; Penn, R. L. Role of a Modulator in the Synthesis of Phase-Pure NU-1000. ACS Appl. Mater. Interfaces. 2017, 9 (45), 39342–39346.
81. Kung, C. W.; Wang, T. C.; Mondloch, J. E.; Fairen-Jimenez, D.; Gardner, D. M.; Bury, W.; Klingsporn, J. M.; Barnes, J. C.; Van Duyne, R.; Stoddart, J. F.; Wasielewski, M. R.; Farha, O. K.; Hupp, J. T. Metal-Organic Framework Thin Films Composed of Free-Standing Acicular Nanorods Exhibiting Reversible Electrochromism. Chem. Mater. 2013, 25 (24), 5012–5017.
82. Goswami, S.; Ray, D.; Otake, K. I.; Kung, C. W.; Garibay, S. J.; Islamoglu, T.; Atilgan, A.; Cui, Y.; Cramer, C. J.; Farha, O. K.; Hupp, J. T. A Porous, Electrically Conductive Hexa-Zirconium(Iv) Metal-Organic Framework. Chem. Sci. 2018, 9 (19), 4477–4482.
83. Verma, P. K.; Huelsenbeck, L.; Nichols, A. W.; Islamoglu, T.; Heinrich, H.; Machan, C. W.; Giri, G. Controlling Polymorphism and Orientation of NU-901/NU-1000 Metal-Organic Framework Thin Films. In AIChE Annual Meeting, Conference Proceedings
2022, 10556–10566.
84. Li, J.; Lv, Q.; Bi, L.; Fang, F.; Hou, J.; Di, G.; Wei, J.; Wu, X.; Li, X. Metal-Organic Frameworks as Superior Adsorbents for Pesticide Removal from Water: The Cutting-Edge in Characterization, Tailoring, and Application Potentials. Coord. Chem. Rev. 2023, 493 (15), 215303.
85. Gupta, D. K.; Kumar, S.; Wani, M. Y. MOF Magic: Zirconium-Based Frameworks in Theranostic and Bio-Imaging Applications. J. Mater. Chem. B 2024, 12 (3).
86. Garibay, S. J.; Iordanov, I.; Islamoglu, T.; DeCoste, J. B.; Farha, O. K. Synthesis and Functionalization of Phase-Pure NU-901 for Enhanced CO2 Adsorption: The Influence of a Zirconium Salt and Modulator on the Topology and Phase Purity. Cryst. Eng. Comm. 2018, 20 (44).
87. Yang, L.; Idrees, K. B.; Chen, Z.; Knapp, J.; Chen, Y.; Wang, X.; Cao, R.; Zhang, X.; Xing, H.; Islamoglu, T.; Farha, O. K. Nanoporous Water-Stable Zr-Based Metal-Organic Frameworks for Water Adsorption. ACS Appl. Nano. Mater. 2021, 4 (5), 4346–4350.
88. Alfa Aesar. Certificate of Analysis. Retrieved from https://assets.thermofisher.com/TFS-Assets%2FGC%2Fcertificate%2FCertificates-of-Analysis%2F022864-PL001487.pdf
89. Atamanchemicals. CH(CYCLOHEXANE). Retrieved from https://www.atamanchemicals.com/ch-cyclohexane_u27640/.
90. Marinoni, N.; Broekmans, M. A. T. M. Microstructure of Selected Aggregate Quartz by XRD, and a Critical Review of the Crystallinity Index. Cem. Concr. Res 2013, 54, 215–225.
91. Park, S.; Baker, J. O.; Himmel, M. E.; Parilla, P. A.; Johnson, D. K. Cellulose Crystallinity Index: Measurement Techniques and Their Impact on Interpreting Cellulase Performance. Biotechnol. Biofuels 2010, 3.
92. Choi, G. M.; Mandal, M.; Jung, H. J.; Panda, J.; Kwon, Y. J.; Zhang, K.; Vivek, E.; Shon, M.; Ravi, K.; Baek, K.-Y.; Kwon, H. T.; Yeo, J.-G.; Cho, K. Y. Post-Synthetic Modifications (PSM)-Induced Defects in Hybrid Metal-Organic Frameworks (MOFs) to Unleash Potential in Gas Separation Membrane Applications. JMST 2024, 201 (1), 95–118.
93. Klet, R. C.; Liu, Y.; Wang, T. C.; Hupp, J. T.; Farha, O. K. Evaluation
of Brønsted Acidity and Proton Topology in Zr- and Hf-Based Metal-Organic Frameworks Using Potentiometric Acid-Base Titration. J. Mater. Chem. A. 2016, 4 (4), 1479–1485.
94. Liang, W.; Li, L.; Hou, J.; Shepherd, N. D.; Bennett, T. D.; D’Alessandro, D. M.; Chen, V. Linking Defects, Hierarchical Porosity Generation and Desalination Performance in Metal-Organic Frameworks. Chem. Sci. 2018, 9 (14), 3508–3516.
95. Wang, S.; Zhang, X.; Chang, X.; Zong, M. Y.; Fan, C. Z.; Guo, D. X.; Xu, J.; Wang, D. H.; Bu, X. H. Rational Design of Ionic V-MOF with Confined Mo Species for Highly Efficient Oxidative Desulfurization. Appl. Catal. B: Environ. 2021, 298, 120594.
96. DeStefano, M. R.; Islamoglu, T.; Garibay, S. J.; Hupp, J. T.; Farha, O. K. Room-Temperature Synthesis of UiO-66 and Thermal Modulation of Densities of Defect Sites. Chem. Mater. 2017, 29 (3), 1357–1361.
97. Dissegna, S.; Epp, K.; Heinz, W. R.; Kieslich, G.; Fischer, R. A. Defective Metal-Organic Frameworks. Adv. Mater. 2018, 1704501.
98. Ye, G.; Zhang, D.; Li, X.; Leng, K.; Zhang, W.; Ma, J.; Sun, Y.; Xu, W.; Ma, S. Boosting Catalytic Performance of Metal-Organic Framework by Increasing the Defects via a Facile and Green Approach. ACS Appl. Mater. Interfaces. 2017, 9 (40), 34937–34943.
99. Planas, N.; Mondloch, J. E.; Tussupbayev, S.; Borycz, J.; Gagliardi, L.; Hupp, J. T.; Farha, O. K.; Cramer, C. J. Defining the Proton Topology of the Zr 6 -Based Metal–Organic Framework NU-1000. J. Phys. Chem. Lett. 2014, 5 (21), 3716–3723.
100. 張嘉芳張嘉芳. MTN 型金屬有機骨架由非序化中間體轉變為結晶態的快速型金屬有機骨架由非序化中間體轉變為結晶態的快速途徑研究途徑研究, 國立臺灣師範大學理學院化學系研究所碩士論文國立臺灣師範大學理學院化學系研究所碩士論文, 2022.
101. Thomas-Hillman, I.; Stevens, L. A.; Lange, M.; Möllmer, J.; Lewis, W.; Dodds, C.; Kingman, S. W.; Laybourn, A. Developing a Sustainable Route to Environmentally Relevant Metal-Organic Frameworks: Ultra-Rapid Synthesis of MFM-300(Al) Using Microwave Heating. Green Chem. 2019, 21 (18), 5039–5045.
102. Guo, L.; Han, X.; Ma, Y.; Li, J.; Lu, W.; Li, W.; Lee, D.; da Silva, I.; Cheng, Y.; Rudić, S.; Manuel, P.; Frogley, M. D.; Ramirez-Cuesta, A. J.; Schröder, M.; Yang, S. High Capacity Ammonia Adsorption in a Robust Metal-Organic Framework Mediated by Reversible Host-Guest Interactions. Chem. Comm. 2022, 58 (38), 5753–5756.
103. Yu, L.; Cui, W. G.; Zhang, Q.; Li, Z. F.; Shen, Y.; Hu, T. L. Atomic
Layer Deposition of Nano-Scale Molybdenum Sulfide within a Metal-Organic Framework for Highly Efficient Hydrodesulfurization. Materials Advances 2021, 2 (4), 1294–1301.
104. Xu, M.; Meng, S. S.; Cai, P.; Tang, W. Q.; Yin, Y. D.; Powell, J. A.; Zhou, H. C.; Gu, Z. Y. Modulating the Stacking Modes of Nanosized Metal-Organic Frameworks by Morphology Engineering for Isomer Separation. Chem. Sci. 2021, 12 (11).
105. Luo, T.; Wang, Z.; Chen, Y.; Li, H.; Peng, M.; Tuna, F.; McInnes, E. J. L.; Day, S. J.; An, J.; Schröder, M.; Yang, S. Photocatalytic Dehalogenative Deuteration of Halides over a Robust Metal–Organic Framework. Angew. Chem. Int. Ed. 2023, 62 (48), e202306267.
106. Habib, N.; Shamair, Z.; Tara, N.; Nizami, A.-S.; Akhtar, F. H.; Ahmad, N. M.; Gilani, M. A.; Bilad, M. R.; Khan, A. L. Development of Highly Permeable and Selective Mixed Matrix Membranes Based on Pebax®1657 and NOTT-300 for CO2 Capture. Sep. Purif. Technol. 2020, 234, 116101.
107. Pankajakshan, A.; Sinha, M.; Ojha, A. A.; Mandal, S. Water-Stable Nanoscale Zirconium-Based Metal–Organic Frameworks for the Effective Removal of Glyphosate from Aqueous Media. ACS Omega 2018, 3 (7), 7832–7839.
108. Donald L. Pavia; Gary M. Lampman; George S. Kriz; James R. Vyvyan. Introduction to Spectroscopy, 5th ed, 63.
109. Fan, Y.; Liang, H.; Jian, M.; Liu, R.; Zhang, X.; Hu, C.; Liu, H. Removal of Dimethylarsinate from Water by Robust NU-1000 Aerogels: Impact of the Aerogel Materials. J. Chem. Eng. 2023, 455, 140387.
110. Świsłocka, R.; Samsonowicz, M.; Regulska, E.; Lewandowski, W. Molecular Structure of 4-Aminobenzoic Acid Salts with Alkali Metals. J. Mol. Struct. 2006, 792–793, 227–238.
111. Panicker, L. Structural, Vibrational, Thermal and Computational Studies of New Organo-Selenate Compounds Bis(4-Carboxyanilinium) Selenate and Bis(4-Carboxyanilinium) Selenate Trihydrate. J. Mol. Struct. 2024, 1296, 136764.

無法下載圖示 電子全文延後公開
2026/06/30
QR CODE