簡易檢索 / 詳目顯示

研究生: 張祥利
Shyang-Lih Chang
論文名稱: 智慧型停車場系統:車牌辨識,車輛導引,及裝置控制子系統
Intelligent Parking Lot System: License Plate Recognition, Vehicle Guidance, and Device Control Subsystems
指導教授: 陳世旺
Chen, Sei-Wang
學位類別: 博士
Doctor
系所名稱: 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 151
中文關鍵詞: 智慧型停車場系統車牌辨識車輛導引裝置控制彩色邊線偵測粒子濾波器
英文關鍵詞: Intelligent Parking Lot System, License Plate Recognition, Vehicle Guidance, Device Control, Color Edge Detection, Particle Filter
論文種類: 學術論文
相關次數: 點閱:294下載:15
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文提出一種新的停車場系統,稱為智慧型停車場系統,此系統結合影像處理、電腦視覺、感測、控制、通訊、網路、及先進的管理技術等,希望在現有的資源下做一有效的整合,以提供停車場管理者一個全自動、高效率的管理系統;並給予車主一個安全、便利、及人性化的服務。
    本停車場系統含有七個子系統:車牌辨識系統、車輛導引系統、感測系統、控制系統、自動收費系統、網路及通訊系統、和中央管理系統。首先當車輛欲進入本停車場前,先以車牌辨識系統確認車輛的身份,並記錄其影像及進入的時間;接著由車輛導引系統,根據停車場內各停車區域車輛停放的情形,以方向指示器導引該車輛前往最佳停車位;當車輛停妥後,記錄其停放位置。而當車主欲前來取車離開時,可以車牌號碼、停放位置、或大約進場的時間中任何一種資訊,再配合影像確認車子,迅速繳費並取得車子;而在出口處亦設有車牌辨識系統,確認身份後決定是否開閘門放行。
    此外,我們在停車場內各適當地點,分別安置有溫度、水位、煙霧、一氧化碳等感測元件,當停車場內有任何溫度、煙霧、一氧化碳濃度、水位異常時,可以適時的啟動場內自動控制系統,如消防設備、抽風、抽水馬達、防火、防水閘門、及警報系統。必要時亦可透過網路及通訊系統主動報警,及通知車主前來處理,以保障停車場內人員及車輛之安全。
    在本研究中,我們除了提出整個停車場的規劃構想及理論架構外,主要著重在車牌辨識系統,車輛導引系統、及裝置控制系統的發展。亦提出一些實施的技術。其中發展演算法可自動規劃以最少的攝影機佈設,來達到監看整個停車場的目的;安全監視演算法自動察覺意外、治安、環境等的安全;車牌辨識演算法識別車輛的身份;車輛導引演算法可快速引導車輛至最佳停車位等。在硬體方面,我們嘗試將上述演算法及軟件中計算較為費時的部份,提出其硬體的架構,並以FPGA來實現,藉由硬體平行處理之能力,加速運算時間。此外對於停車場內之感測及控制等電路,則以單晶片微處理機來實現。

    This study introduces a new parking lot management system called the Intelligent Parking Lot System (IPLS), which combines sensing, image processing, computer vision, controlling, communicating, networking, and advanced management technologies to ensure the smooth day-to-day operations of a parking lot. Using the Intelligent Parking Lot System, parking lot managers will be able to better manage and monitor their parking lot, as well as offer customers a safer and a more customer-focused environment.
    The Intelligent Parking Lot System can be divided into seven sub-systems: a License Plate Recognition System (LPRS), Vehicle Guidance System (VGS), Security Surveillance System (SSS), Device Control System (DCS), Payment and Inquiry System (PIS), Network System (NS) and Central Management System (CMS). When a vehicle enters this parking lot, it is detected by the LPRS, which also takes a photo of the vehicle and records its entrance time. The Guidance System then leads the car to the most conveniently located vacant parking space through the direction indicators. After the car has been parked, the parking space will be updated in the system with its time stamp, the vehicle’s license plate number and another photo. Later on, when the owner wants to retrieve the vehicle, he or she can identify it in the system using information such as license plate number, parking space number, approximate entrance time or a photo of the car. After the customer has completed the payment process, the License Plate Recognition System then notifies the exit gate of the impending arrival of that particular vehicle, allowing the exit gate to successfully determine whether a particular vehicle should be allowed out or not.
    Furthermore, sensors inside the parking lot are set up to measure temperature, water levels, smoke, and carbon dioxide concentration. If an abnormal state is detected, the automatic control system will be able to initiate contingency measures such as fire extinguishers, electric exhausts, pumping motors, fireproof and waterproof gates, as well as the alarm system. If necessary, the Network System will be able to inform the police, notify car owners to retrieve their vehicles, and ensure the general safety of the vehicles and the people inside the parking lot.
    This research, in addition to presenting a complete parking lot system and an accompanying theoretical framework, also introduces some operational technologies and algorithms, which are listed below.
    • License Plate Recognition algorithms can be used to identify vehicles.
    • Development algorithms can be used to determine how to monitor the entire parking lot by using the least number of cameras.
    • Car guidance algorithms can be used to lead the car to the most conveniently located parking space in a quick and efficient manner.
    • Safety monitoring algorithms can be used to detect accidents and to monitor public safety.
    Moreover, this study also explores developments in sensor controlling, automatic toll charging, Internet communication, and software for the central management system. A set of security delivery modes was also designed for data and information delivery among the sub-systems, with a focus on preventing unauthorized system intrusions, and also to facilitate an efficient information management system. We also tried to introduce the frameworks of the time-consuming algorithms and software mentioned above, into the hardware of the system. FPGA(Field Programmable Gate Array) was carried out to shorten the calculation time through the use of hardware parallel processing. Some Single-Chip micro-processors were also used to sense and control the various electric circuits of the parking lot system.

    Chapter 1 Introduction 1.1 Motivation …………………………………………………… 1-1 1.2 Problems of Parking Management Systems ………… 1-5 1.3 Research Aims ……………………………………………… 1-9 1.4 Organization of This Dissertation …………… 1-12 Chapter 2 Intelligent Parking Lot System 2.1 Management Unit …………………………………………… 2-4 2.2 Monitoring Unit ………………………………………………… 2-6 2.3 Control Unit …………………………………………………… 2-8 Chapter 3 License Plate Recognition System 3.1 Introduction ………………………………………………… 3-1 3.2 LPR …………………………………………………………… 3-4 3.3 License Plate Locating Module ……………………… 3-6 3.3.1 Basic Concepts ……………………………………… 3-6 3.3.2 Color Edge Detection ……………………………… 3-8 3.3.3 Fuzzy Maps ……………………………………………… 3-9 3.3.4 Fuzzy Aggregation ………………………………… 3-12 3.4 License Number Identification Module …………… 3-14 3.4.1 Fundamental Idea …………………………………… 3-14 3.4.2 Optical Character Recognition ……………… 3-17 3.5 Experimental Results …………………………………… 3-25 3.6 Concluding Remarks and Future Work ……………… 3-30 Chapter 4 Vehicle Guidance System 4.1 Camera Deployment System ………………………………… 4-3 4.1.1 Introduction ………………………………………… 4-3 4.1.2 Problem Description and System Flowchart … 4-6 4.1.3 Camera Calibration …………………………………… 4-10 4.1.4 Camera Deployment ……………………………………… 4-14 4.1.5 Experimental Results ……………………………… 4-18 4.2 Vehicle Detection and Tracking …………………………… 4-25 4.2.1 Introduction …………………………………………… 4-25 4.2.2 Vehicle Detection ……………………………………… 4-28 4.2.3 Vehicle Tracking ……………………………………… 4-33 4.3 Guidance… ………………………………………........... 4-49 4.3.1 System Flowchart …………………………………… 4-49 4.3.2 Parking Space Assignment and Path Planning … 4-52 4.3.3 Experimental Results ……………………………… 4-56 Chapter 5 Device Control System 5.1 Camera Switcher Circuits …………………………………… 5-1 5.2 Vacancy Display …………………………………………………… 5-4 5.3 Direction Indicator ……………………………………………… 5-5 5.4 Gate Circuit ………………………………………………………… 5-6 5.5 Security Circuit …………………………………………………… 5-7 Chapter 6 Hardware Implementation 6.1 Color Edge Detection of License Plates ………………… 6-1 6.1.1 Introduction ……………………………………………… 6-1 6.1.2 License Plate Edge Detection ……………………… 6-3 6.1.3 Edge Detector Hardware Architecture …………… 6-7 6.1.4 Experimental Results ………………………………… 6-12 6.1.5 Concluding Remarks …………………………………… 6-14 6.2 Programmable Morphological Processor …………………… 6-15 6.2.1 Introduction ……………………………………………… 6-15 6.2.2 Morphological Operation ……………………………… 6-16 6.2.3 Hardware Architecture ………………………………… 6-20 6.2.4 Experimental Results ………………………………… 6-26 6.2.5 Conclusion ………………………………………………… 6-27 Chapter 7 Summary and Directions for Future Research 7.1 Summary ………………………………………………………………… 7-1 7.2 Directions for Future Research ……………………………… 7-3 Bibliography …………………………………………………………………B-1

    [Ado 98] G. Adorni, F. Bergenti, and S. Cagnoni, “Vehicle License Plate Recognition by Means of Cellular Automata,” Proc. of IEEE Int. Conf. on Intelligent Vehicles, pp. 689–693, 1998.
    [Als 04] F. E. Alsaqre, and Yuan Baozong, “Multiple Moving Objects Tracking for Video Surveillance Systems,” IEEE 2004 7th International Conference on Signal Processing, pp. 1301-1305 vol. 2, 2004.
    [Bai 04] H. L. Bai and C. P. Liu, “A Hybrid License Plate Extraction Method Based on Edge Statistics and Morphology,” Proc. 17th Int. Conf. on Pattern Recognition, vol. 2, pp. 831-834, 23-26 Aug. 2004.
    [Bla 02] J. Black, T. Ellis, and P. Rosin, “Multi View Image Surveillance and Tracking,” IEEE Workshop on Motion and Video Computing, pp. 169–174, 2002.
    [Boe 07] Y. Boers, and H. Driessen, “The Mixed Labeling Problem in Multi Target Particle,” IEEE 10th International Conference on Information Fusion, pp. 1–7, 2007.
    [Bog 95] S. Bogner, “Introduction to Panoramic Imaging,” Proc. of IEEE SMC Conference, pp. 3100–3106, Oct. 1995.
    [Bru 98] M. H. T. Brugge, J. H. Stevens, J. A. G. Nijhuis, and L. Spaanenburg, “License Plate Recognition Using DTCNNs,” Proc. 5th IEEE Int. Workshop on Cellular Neural Networks and Their Applications, pp. 212–217, 1998.
    [Cas 96] K. R. Castleman, Digital Image Processing. Englewood Cliffs, NJ: Prentice-Hall, pp. 550–554, 1996.
    [Cha 04] S. L. Chang, L. S. Chen, Y. C. Chung, and S. W. Chen, “Automatic License Plate Recognition,” IEEE Tran. on Intelligent Transportation Systems, vol. 5, no. 1, pp. 42-53, Mar 2004.
    [Che 96] S. W. Chen, G. C. Stockman, and K. E. Chang, “SO DynamicDeformation for Building of 3-D models,” IEEE Trans. Neural Networks, vol. 7, pp. 374–387, June 1996.
    [Che 08] A. H. Chen, M. Zhu, Y. H. Wang, and C. Xue, “Mean Shift Tracking Combining SIFT,” 9th IEEE International Conference on Signal Processing, pp. 1532–1535, 2008.
    [Chi 05] S. Y. Chien, S. Y. Ma, and L. G. Chen, “Partial-Result-Reuse Architecture and Its Design Technique for Morphological Operations with Flat Structuring Elements,” IEEE Transaction on circuits and systems for video technology, vol. 15, No.9, pp. 1156-1169, Sept 2005.
    [Chu 02] Y. C. Chung, J. M. Wang and S. W. Chen, “A Vision-Based Traffic Light Detection System at Intersections,” Journal of Taiwan Normal University: Mathematics, Science & Technology, vol. 47, No. 1, pp. 67-86, 2002.
    [Chu 05] Y. C. Chung, Y. J. Chuang, J. M. Wang, and S. W. Chen, “Portable Stolen Vehicle Detector,” Proc. 18th IPPR Conf. on Computer Vision, Graphics and Image Processing, Taipei, Taiwan, D1-7, pp. 167-174, Aug 2005.
    [Cla 98] R. Parisi, E. D. D. Claudio, G. Lucarelli, and G. Orlandi, “Car Plate Recognition by Neural Networks and Image Processing,” Proc. IEEE Int. Symp. Circuits and Systems, vol. 3, pp. 195–198, 1998.
    [Com 99] D. Comaniciu, and P. Meer, “Mean Shift Analysis and Applications,” The Proceedings of the Seventh IEEE International Conference on Computer Vision, vol. 2, pp. 1197–1203, 1999.
    [Cow 95] J. R. Cowell, “Syntactic Pattern Recognizer for Vehicle Identification Numbers,” Image and Vision Comput., vol. 13, no. 1, pp. 13–19, 1995.
    [Cul 88] J. Culberson and R. Reckhow, “Covering Polygons is Hard,” Proceedings of 29th IEEE Conference on Foundations of Computer Science, 1988.
    [Dan 00] K. Daniijidis and C. Geyer, Omn-idirectional Vision: Theory and Algorithms, GRASP Lab., University of Pennsylvanis, pp.89-96, 2000.
    [Dan 01] K. M. Daniels and R. Inkulu, “Translational Polygon Covering Using Intersection Graphs,” Proceedings of 13th Canadian Conference on Computational Geometry, Ontario, Canada, pp. 61-64, Aug. 2001.
    [Dav 90] P. Davies, N. Emmott, and N. Ayland, “License Plate Recognition Technology for Toll Violation Enforcement,” Inst. Elect. Eng. Colloquium Image Analysis for Transport Applications, pp. 7/1–7/5, 1990.
    [Dra 97] S. Draghici, “A Neural Network Based Artificial Vision System for License Plate Recognition,” Int. J. Neural Systems, vol. 8, pp. 113–126, 1997.
    [Ekm 07] M. Ekman, E. Sviestins, L. Sjoberg, “Particle Filters for Tracking Closely Spaced Targets,” IEEE 10th International Conference on Information Fusion, pp. 1-8, 2007.
    [Emi 01] D. M. Emiris and D. E. Koulouriotis, “Automated Optic Recognition of Alphanumeric Content in car License Plates in a Semi-structured Environment,” Proc. Int. Conf. Image Processing, vol. 3, pp. 50–53, 2001.
    [Esp 03] V. Espinosa-Duro, “Fingerprints Thinning Algorithm,” IEEE Aerospace and Electronic Systems Magazine, vol. 18, pp. 28-30, Sept. 2003.
    [Gao 00] D. S. Gao and J. Zhou, “Car License Plates Detection from Complex Scene,” Proc. 5th Int. Conf. Signal Processing, vol. 2, pp. 1409–1414, 2000.
    [Gao 01] H. Gao, W. C. Siu, and C. H. Hou, “Improved Techniques for Automatic Image Segmentation,” IEEE Transactions on Circuit and Systems for Video Technology, vol. 11, no. 12, pp. 1273-1280, Dec. 2001.
    [Gon 93] R. C. Gonzalez and R. E. Woods, Digital Image Processing, New York, US: Addison-Wesley Publishing Co., pp. 197-201, 1993.
    [Gro 88] S. Grossberg, “Nonlinear Neural Networks: Principles, Mechanisms, and Architecture,” Neural Networks, 1, pp. 17-61, 1988.
    [Gui 90] Y. Cui and Q. Huang, “Character Extraction of License Plates from Video,” Proc. IEEE Conf. Computer Vision and Pattern Recognition, pp. 502–507, 1997.
    [Hed 05] H. Hedberg, F. Kristensen, P. Nilsson, and V. Owell, “A Low Complexity Architecture for Binary Image Erosion and Dilation Using Structuring Element Decomposition,” Proc. of IEEE International Symposium on Circuits and Systems, vol. 4, pp. 3431-3434, May 23-26, 2005.
    [Heg 98] H. A. Hegt, R. J. De la Haye, and N. A. Khan, “A High Performance License Plate Recognition System,” Proc. IEEE Int. Conf. System, Man, and Cybernetics, vol. 5, pp. 4357–4362, 1998.
    [ Her 97] X. F. Hermida, F. M. Rodriguez, J. L. F. Lijo, F. P. Sande, and M. P. Iglesias, “A System for the Automatic and Real Time Recognition of VLP’s (Vehicle License Plate),” Proc. Lecture Notes in Computer Science, vol. 1311, pp. 552–558, 1997.
    [Hon 01] H. Hontani and T. Koga, “Character Extraction Method Without Prior Knowledge on Size and Position Information,” Proc. IEEE Int. Conf. Vehicle Electronics, pp. 67–72, 2001.
    [Hua 05] C. I. Huang, “Intelligent Parking Management System,” Master thesis, National Taiwan Normal University, Taipei, Taiwan, June 2005
    [Ike 00] T. Ikenaga, and T. Ogura, “Real-Time Morphology Processing Using Highly Parallel 2-D Cellular Automata CAM2,” IEEE Transactions On Image Processing, vol 9, no. 12, pp. 562-565, Dec. 2000.
    [Ito 06] Y. Ito, T. Sato, N. Yamashita, Jianming LU, H. Sekiya and T. Yahagi, “Impulse Noise Detector Using Mathematical Morphology,” Proc. of IEEE International Symposium on Circuits and Systems, pp. 4261-4265, May, 2006.
    [Kel 94] J. M. Keller and R. Krishnapuram, “Fuzzy Decision Models in Computer Vision,” Fuzzy Sets, Neural Networks, and Soft Computing, R. R. Yager and L. A. Zadeh, Eds. New York: Van Nostrand, pp. 213–232, 1994.
    [Kha 06] Z. Khan, T. Balch, and F. Dellaert, “MCMC Data Association and Sparse Factorization Updating for Real Time Mulittarget Tracking with Merged and Multiple Measurements,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 28, No. 12, pp. 1960-1972, Dec. 2006.
    [Kim 96] S. K. Kim, D. W. Kim, and H. J. Kim, “A Recognition of Vehicle License Plate Using a Genetic Algorithm Based Segmentation,” Proc. Int. Conf. Image Processing, vol. 2, pp. 661–664, 1996.
    [Kim 00] K. K. Kim, K. I. Kim, J. B. Kim, and H. J. Kim, “Learning-based Approach for License Plate Recognition,” Proc. IEEE Signal Processing Society Workshop, vol. 2, pp. 614–623, 2000.
    [Kim 01] D. S. Kim and S. I. Chien, “Automatic Car License Plate Extraction Using Modified Generalized Symmetry Transform and Image Warping,” Proc. IEEE Int. Symp. Industrial Electronics, vol. 3, pp. 2022–2027, 2001.
    [Kim 08] Z. W. Kim, ”Real Time Object Tracking Based on Dynamic Feature Grouping with Background Subtraction,” IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8, 2008.
    [Kli 95] G. J. Klir and B. Yuan, Fuzzy Sets and Fuzzy Logic, Theory and Applications. Englewood Cliffs, NJ: Prentice-Hall, 1995.
    [Koh 89] T. Kohonen, Self-Organization and Aassociative Memory. New York: Springer-Verlag, 1989.
    [Kuh 06] A. Kuh, D. Mandic, “Sequential Detection Using Least Squares Temporal Difference Methods,” International Conference on Acoustics, Speech and Signal Processing, vol. 5, 2006.
    [Lot 90] R. A. Lotufo, A. D. Morgan, and A. S. Johnson, “Automatic Numberplate Recognition,” Inst. Elect. Eng. Colloquium on Image Analysis for Transport Applications, pp. 6/1–6/6, 1990.
    [Mar 82] D. Marr, Vision. New York: Freeman, 1982.
    [Mas 01] O. Masoud, N. P. Papanikolopoulos, “A Novel Method for Tracking and Counting Pedestrians in Real-time Using a Single Camera,” IEEE Transactions on Vehicular Technology, vol. 50, no. 5, pp. 1267–1278, 2001.
    [Miy 91] K. Miyamoto, K. Nagano, M. Tamagawa, I. Fujita, and M. Yamamoto, “Vehicle License Plate Recognition by Image Analysis,” Proc. Int. Conf. Industrial Electronics, Control and Instrumentation, pp. 1734–1738, 1991.
    [Mot 90] R. Motwani, A. Raghunathan, and H. Saran, “Covering Orthogonal Polygons with Star Polygons: The Perfect Graph Approach,” Journal of Computer and System Sciences, vol. 40, pp. 19-48, 1990.
    [Motor] Motor Vehicles Office Taipei City Government, http://www.tcmvd.gov.tw/.
    [Muk 03] S. Mukhopadhyay and B. Chanda, “Multiscale Morphological Segmentation of Gray-Scale Images,” IEEE Transactions on image processing, vol. 12, no. 5, pp. 533-549, May 2003.
    [Nai 00] T. Naito, T. Tsukada, K. Yamada, K. Kozuka, and S. Yamamoto, “Robust License-plate Recognition Method for Passing Vehicles under Outside Environment,” IEEE Trans. Veh. Technol., vol. 49, pp. 2309–2319, Nov. 2000.
    [Nak 79] Y. Nakagawa and A. Rosenfeld, “Some Experiments on Variable Thresholding,” Pattern Recognition, vol. 11, no. 3, pp. 191–204, 1979.
    [Nay 97] S. K. Nayar, “Omni-directional Vision,” Proceedings of the International Symposium on Robotics Research, New York, 1997.
    [Nij 95] J. A. G. Nijhuis, M. H. T. Brugge, K. A. Helmholt, J. P. W. Pluim, L. Spaanenburg, R. S. Venema, and M. A. Westenberg, “Car License Plate Recognition with Neural Networks and Fuzzy Logic,” Proc. IEEE Int. Conf. Neural Networks, vol. 5, pp. 2232–2236, 1995.
    [Ong 00] S. Ong and M. H. Sunwoo, “A Morphological Filter Chip Using a Modified Decoding Function,” IEEE Transactions on Circuits and Systems-II: Analog and Digital Signal Processing, vol. 47, no. 9, pp. 876-885, Sept. 2000.
    [Per 02] S. W. Perry, H. S. Wong, and L. Guan, Adaptive Image Processing, A Computational Intelligence Perspective. Boca Raton, FL: CRC, 2002.
    [Poo 95] J. C. H. Poon, M. Ghadiali, G. M. T. Mao, and L. M. Sheung, “A Robust Vision System for Vehicle License Plate Recognition Using Grey-scale Morphology,” Proc. IEEE Int. Symp. Industrial Electronics, vol. 1, pp. 394–399, 1995.
    [Qiy 06] Wu Qiying, Cui Huali, Du Xiaofeng, Wang Mingfen, and Jin Taisong, “Real-time Moving Maritime Objects Segmentation and Tracking for Video Communication,” IEEE International Conference Communication Technology, pp. 1–4, 2006.
    [Rit 92] H. Ritter, T. Martinetz, and K. Schulten, Neural Computation and Selforganizing Maps an Introduction. New York: Addison-Wesley, 1992.
    [Sal 99] L. Salgado, J. M. Menendez, E. Rendon, and N. Garcia, “Automatic Car Plate Detection and Recognition Through Intelligent Vision Engineering,” Proc. IEEE Int. Carnahan Conf. Security Technology, pp. 71–76, 1999.
    [Sal 05] R. A. Salinas, U. Raff and C. Farfan, “Automated Estimation of Rock Fragment Distributions Using Computer Vision and its Application in Mining,” IEEE Proc.-Vis. Image Signal Process, vol. 152, No. 1, pp. 1-8, Feb. 2005.
    [Sha 01] L. G. Shapiro and G. C. Stockman, Computer Vision, Prentice Hall, New Jersey, pp.56-63, 2001.
    [Sir 98] T. Sirithinaphong and K. Chamnongthai, “The Recognition of Car License Plate for Automatic Parking System,” Proc. 5th Int. Symp. Signal Processing and its Applications, pp. 455–457, 1998.
    [Soh 94] Y. S. Soh, B. T. Chun, and H. S. Yoon, “Design of Real Time Vehicle Identification System,” Proc. IEEE Int. Conf. System, Man, and Cybernetics: Humans, Information, and Technology, vol. 3, pp. 2147–2152, 1994.
    [Sur 05] P. V. Suryanarayana, S. K. Mitra, A Banerjee and A.K. Roy, “A Morphology Based Approach for Car License Plate Extraction,” Proc. of IEEE Indicon Conference, Chennai, India, pp. 24-27, Dec. 2005.
    [Unn 07] H. Unno, K. Ojima, K. Hayashibe, H. Saji, “Vehicle Motion Tracking Using Symmetry of Vehicle and Background Subtraction,” IEEE Workshop on Intelligent Vehicles Symposium, pp. 1127-1131, 2007.
    [Urb 05] E. R. Urbach, and M. H. F. Wilkinson, “Efficient 2-D Grayscale Morphological Transformations with Arbitrary Flat Structuring Elements,” IEEE Transactions on Image Processing, vol. 17, no.1, pp. 1-8, January 2008.
    [Wan 06] J. M. Wang, C. T. Tsai, S. Cherng, S. W. Chen, “Omni-Directional Camera Networks and Data Fusion for Vehicle Tracking in an Indoor Parking Lot,” IEEE International Conference on Video and Signal Based Surveillance, pp. 45–45, 2006.
    [Yam 99] K. Yamaguchi, Y. Nagaya, K. Ueda, H. Nemoto, and M. Nakagawa, “A Method for Identifying Specific Vehicles Using Template Matching,” Proc. IEEE Int. Conf. Intelligent Transportation Systems, pp. 8–13, 1999.
    [Yan 05] F. Yang and Z. Ma, “Vehicle License Plate Location Based on Histogramming and Mathematical Morphology,” Proc. 4th IEEE Workshop on Automatic Identification Advanced Technologies, pp. 89 – 94, Oct. 2005.
    [Yan 06] X. Yang, H. Li, and X. Zhou, “Nuclei Segmentation Using Marker-controlled Watershed, Tracking Using Mean-shift, and Kalman Filter in Time-lapse Microscopy,” IEEE Transactions on Circuit and Systems, vol. 53, no.11, pp. 2405-2414, Nov. 2006.
    [Yu 00] M. Yu and Y. D. Kim, “An approach to Korean license plate recognition based on vertical edge matching,” in Proc. IEEE Int. Conf. Systems, Man, and Cybernetics, pp. 2975–2980, 2000.
    [Yun 99] N. H. C. Yung, K. H. Au, and A. H. S. Lai, “Recognition of Vehicle Registration Mark on Moving Vehicles in an Outdoor Environment,” Proc. IEEE Int. Conf. Intelligent Transportation Systems, pp. 418–422, 1999.
    [Zhu 02] W. G. Zhu, G. J. Hou, and X. Jia, “A Study of Locating Vehicle License Plate Bbased on Color Feature and Mathematical Morphology”, Proc. 6th Int. Conf. on Signal Processing, vol. 1, pp. 748-751, Aug. 2002.

    下載圖示
    QR CODE