簡易檢索 / 詳目顯示

研究生: 余祐誠
YU, Yu-Cheng
論文名稱: 彩色電子紙廣告看板的資料壓縮方法
Data Compression for Advertising Billboards with ColorElectronic Paper
指導教授: 高文忠
Kao, Wen-Chung
口試委員: 高文忠
Kao, Wen-Chung
賴以威
Lai, I-Wei
范育成
Fan, Yu-Cheng
口試日期: 2024/07/24
學位類別: 碩士
Master
系所名稱: 電機工程學系
Department of Electrical Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 52
中文關鍵詞: 彩色電子紙電子紙影像壓縮影像解壓縮晶片
英文關鍵詞: Color electronic paper, Data compression, Image decompression chip
研究方法: 實驗設計法比較研究觀察研究
DOI URL: http://doi.org/10.6345/NTNU202401426
論文種類: 學術論文
相關次數: 點閱:187下載:14
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文探討了多粒子彩色電子紙廣告看板的資料壓縮方法。隨著電子廣告看板尺寸的擴大,儲存顯示影像所需的緩衝記憶體和閃存容量也隨之增加。由於彩色電子紙具有特定的顯示機制,目前的影像壓縮方法並不完全適用於這種應用。因此,本文提出了一種高效的彩色電子紙圖像壓縮方法,此方法具有簡單的解壓縮機制,能顯著降低設備端解壓縮晶片的成本。同時,在保持影像品質的前提下,儲存影像所需的記憶體空間也得到了顯著減少。解壓縮功能已在FPGA上完成驗證,結果顯示其效能與使用多核心CPU的電腦計算結果相近。

    This paper discusses memory issues for advertising billboards with multi-pigment color electronic paper (e-paper). Enlarging the size of the electronic billboards increases the size of the memory buffer and flash memory used to store display content. Due to the specific display mechanism of the color e-paper, currently available image compression methods are not suitable for this specific application. An efficient image compression method for color e-paper with a low-cost decompression mechanism is presented in the paper. The display quality is good enough, and the total image buffer size could be significantly reduced. The decompression process has been verified on an FPGA, and its performance and processing results are similar to those obtained using a computer with a multi-core CPU.

    誌謝 i Abstract ii 目錄 iv 圖目錄 vii 表目錄 ix 第一章 緒論 1 1.1 研究背景 1 1.2 研究問題及目的 2 1.3 論文架構 3 第二章 文獻探討 4 2.1 多粒子彩色電子紙 4 2.2 有損壓縮 (Lossy Compression) 6 2.3 半色調影像的壓縮方法 7 2.3.1 差分脈衝編碼調製 (Differential Pulse Code Modulation, DPCM) 7 2.3.2 JBIG (Joint Bilevel Image Experts Group) 9 2.3.3 霍夫曼編碼 (Huffman Coding) 11 2.3.4 向量量化 12 2.3.5 半色調量化 (Halftone Quantization) 14 第三章 研究方法 16 3.1 圖像前處理 16 3.1.1 圖層定義 16 3.1.2 半色調轉換 17 3.1.3 圖層優化 17 3.2 電子紙編碼簿 18 3.3 有損壓縮 19 3.3.1 初始化原始編碼簿 19 3.3.2 原始編碼簿的管理 20 3.3.3 向量量化 20 3.3.4 編碼 23 3.3.5 解碼 24 3.4 彩色電子紙圖像壓縮之解壓縮晶片設計 25 3.4.1 解壓縮晶片的架構與運作概述 25 3.4.1.1 步驟控制器 (Step Controller) 26 3.4.1.2 SRAM 控制器 (SRAM Controller) 26 3.4.1.3 編碼簿記憶體控制器 (Codebook RAM Controller) 27 3.4.1.4 索引記憶體控制器 (Index RAM Controller) 27 3.4.1.5 資料切割模組 (Split Data) 28 3.4.2 解壓縮晶片的動作概述 32 3.4.3 資料切割模組的資料處理 33 第四章 實驗結果 36 4.1 實驗環境與設備 36 4.2 壓縮結果比較 38 4.3 解壓縮晶片的執行效能 41 第五章 結果與未來展望 42 5.1 結論 42 5.2 未來展望 42 References 43 附錄 46 自傳 51 學術成就 52

    H. Zang, C. Lin, S. Kishore, M. Jalil, A. Sarvi, L. Liu, and K. Du, “88‐2: Highly saturated color electrophoretic display,” SID Symposium Digest of Technical Papers, vol. 54, pp. 1246–1249, 08 2023.
    A. Hussain, A. Al-Fayadh, and N. Radi, “Image compression techniques: A survey in lossless and lossy algorithms,” Neurocomputing, vol. 300, pp. 44–69, 2018.
    S. E. Umbaugh, Computer imaging: digital image analysis and processing. CRC press, 2005.
    N. Ahmed, T. Natarajan, and K. Rao, “Discrete cosine transform,” IEEE Transactions on Computers, vol. C-23, no. 1, pp. 90–93, 1974.
    L. R. Rabiner, Digital processing of speech signals. Pearson Education India, 1978.
    G. K. Wallace, “The jpeg still picture compression standard,” Communications of the ACM, vol. 34, no. 4, pp. 30–44, 1991.
    W. B. Pennebaker and J. L. Mitchell, JPEG: Still image data compression standard. Springer Science & Business Media, 1992.
    C. Christopoulos, A. Skodras, and T. Ebrahimi, “The jpeg2000 still image coding system: an overview,” IEEE Transactions on Consumer Electronics, vol. 46, no. 4, pp. 1103–1127, 2000.
    M. Adams and R. Ward, “Wavelet transforms in the jpeg-2000 standard,” vol. I, 2001, pp. 160–163.
    S. Forchhammer and K. Jensen, “Data compression of scanned halftone images,” IEEE Transactions on Communications, vol. 42, no. 234, pp. 1881–1893, 1994.
    K. Denecker, D. Van De Ville, F. Habils, W. Meeus, M. Brunfaut, and I. Lemahieu, “Design of an improved lossless halftone image compression codec,” Signal Processing: Image Communication, vol. 17, no. 3, pp. 277–292, 2002.
    H. B. Kekre, S. R. Sange, G. S. Sawant, and A. A. Lahoty, “Image compression using halftoning and huffman coding,” in Technology Systems and Management, Berlin, Heidelberg, 2011, pp. 221–226.
    H. B. Kekre, T. K. Sarode, S. R. Sange, S. Natu, and P. Natu, “Halftone image data compression using kekre’s fast code book generation (kfcg) algorithm for vector quantization,” in Technology Systems and Management, 2011, pp. 34–42.
    H. Kekre, S. R. Sange, A. Kolhe, and B. Mali, “Restoration of color halftone image by using fast inverse half toning algorithm,” in 2009 International Conference on Advances in Recent Technologies in Communication and Computing, 2009, pp. 650–656.
    N. Nasrabadi and R. King, “Image coding using vector quantization: a review,” IEEE Transactions on Communications, vol. 36, no. 8, pp. 957–971, 1988.
    K. Paliwal and V. Ramasubramanian, “Effect of ordering the codebook on the efficiency of the partial distance search algorithm for vector quantization,” IEEE Transactions on Communications, vol. 37, no. 5, pp. 538–540, 1989.
    K. Sayood, Introduction to data compression. Morgan Kaufmann, 2017.
    C.-Y. Hsu, C.-S. Lu, and S.-C. Pei, “Compression of halftone video for electronic paper,” in 2008 15th IEEE International Conference on Image Processing, 2008, pp. 1600–1603.
    W. C. Kao, K. D. Hong, and C. Y. Hsu, “Color reproduction of multi-pigment color electronic papers,” in Proceedings of the 2023 IEEE International Conference on Consumer Electronics (ICCE 2023), 2023.

    下載圖示
    QR CODE