簡易檢索 / 詳目顯示

研究生: 郭志軒
Kuo, Chih-Hsuan
論文名稱: 以單軸追跡的高效能平面式日光集光器
High-performance planar solar concentrator using single-axis tracking
指導教授: 鄧敦建
Teng, Tun-Chien
學位類別: 碩士
Master
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 112
中文關鍵詞: 太陽能平面式集光器全內反射單軸追跡複合拋物面集光器
英文關鍵詞: solar planar concentrator, compound parabolic concentrator, total internal reflection, single-axis tracing
DOI URL: http://doi.org/10.6345/THE.NTNU.DME.009.2018.E08
論文種類: 學術論文
相關次數: 點閱:125下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出一款以單軸追跡的高效能平面式日光集光器,使用具有拋物線截面輪廓的圓弧狀微結構以及複合拋物面集光器(Compound Parabolic Concentrator, CPC)分別作為第一段與第二段集光結構。第一段集光結構利用全內反射將入射的太陽光耦合到下方的導光板並在導光板內藉由內部全反射行進並且在導光板末端端面上聚焦。第二段集光結構則在端面聚焦處將光線導引到末端處並對光線做進一步集中。第二段集光結構具有三種不同尺寸的CPC與設計參數,分別對應不同入射條件的光線,根據入射光角度變化而平移。除了能取代一轉動軸的追跡外,還能夠有效提高集光倍率。
    最後,將集光部分做多層堆疊後搭配單一轉動軸追跡裝置構成此平面式日光集光器。由模擬結果顯示:以裝置在台北為例,總長度為88公分、考慮太陽光譜為AM1.5,在全年維持單軸追跡的情況下,最高與最低效率分別為56.7%與33.1%,最高與最低的集光倍率分別為623與134。

    The paper proposes a high-performance planar solar concentrator using single-axis tracking, using arc-shaped microstructure with parabolic cross-section and compound parabolic concentrator as the first and the second collecting structure. The first collecting structure uses total internal reflection to couple the incident sunlight into the underlying light guide plate and travel within the light guide plate by total internal reflection and focus on the end of it. The second collecting structure directs the incident sunlight to the end at the end spot focusing and further concentrates the incident sunlight. And the second collecting structures are constituted of three different sizes of CPC and design parameters, respectively corresponding to the sunlight of different incident conditions, and shifted according to the change of the incident angle. In addition to being able to replace the trace of a rotating shaft, it can also increase the concentration ratio effectively.
    Finally, the light collecting sections are stacked into multi-layer and assemble with a single rotating shaft tracking device to form the planar solar concentrator. The simulation results show that taking the installation in Taipei as an example, the total length is 88 cm, considering solar spectrum AM1.5, maintaining single-axis tracing through whole year, the maximum and minimum efficiency are 56.7% and 33.1% respectively, and the maximum and minimum concentration ratio are 623 and 134 respectively.

    摘要 i Absract ii 致謝 iii 目錄 iv 圖目錄 ix 表目錄 xvi 1 第一章 緒論 1 1.1 前言 1 1.2 太陽能應用 2 1.2.1 光熱轉換 2 1.2.2 光電轉換 3 1.3 集光器應用 4 1.3.1 表面對光線的作用機制 4 1.3.1.1 穿透式 4 1.3.1.2 反射式 5 1.3.2 鏡面形狀 6 1.3.2.1 拋物面鏡 6 1.3.2.2 球面鏡 6 1.3.2.3 平面鏡 7 1.3.2.4 自由曲面 7 1.3.3 追跡方式 8 1.3.3.1 固定式 8 1.3.3.2 追跡式 9 1.4 研究動機與目的 10 1.5 論文架構 11 2 第二章 基本理論與文獻回顧 12 2.1 折射定律(Snell’s law) 12 2.2 全內反射(Total Reflection) 12 2.3 反射定律(Reflection Law) 12 2.4 圓錐曲線光學性質 13 2.4.1 圓錐曲線反射特性 13 2.4.2 圓錐曲線折射特性 15 2.5 光度學介紹 16 2.5.1 光通量( Luminance Flux) 17 2.5.2 照度( Illuminance) 17 2.5.3 發光強度( Luminous Intensity) 17 2.5.4 輝度( Luminance) 18 2.6 介面表面特性 19 2.6.1 透射( Transmission) 19 2.6.2 反射( Reflection) 19 2.6.3 吸收( Absorption) 19 2.7 光效率(Luminous Efficacy) 20 2.8 幾何集中度比(Geometric Concentration Ratio) 20 2.9 均齊度( Uniformity) 21 2.10 集光倍率(Concentration Ratio) 21 2.11 菲涅耳損失(Fresnel Loss) 22 2.12 參考文獻 23 2.12.1 靜止式非對稱拋物面太陽能集光器的微結構反射表面 23 2.12.2 用於正交集光器徑向耦合方法的平面式微光學太陽能收集器 24 2.12.3 環狀稜鏡陣列的太陽能集光器 25 2.12.4 使用射線追跡的方法評估和優化低集中介電複合拋物面集光器的光學性能 26 2.12.5 具有對稱空氣稜鏡耦合器的全內反射平板波導太陽能集光器 27 2.12.6 具有免對準全內反射收集器和新穎複合追跡器的平面式太陽能集光器 28 2.12.7 使用自由曲面集光器改善在高集光倍率太陽能電池的照度分佈 29 2.12.8 探討在玻璃基板上具有微結構透鏡陣列的太陽能電池上弱光光伏特性 30 2.12.9 用於準靜態微電池聚光光伏的廣角平面微追跡 31 2.12.10 基於稜鏡複合拋物集光器組合的聚光光伏系統 32 2.12.11 新型設計的衍射平板太陽能集光器 33 2.12.12 採用無色差混合集光器和創新二次光學元件的無漏光平板太陽能集光器 34 2.12.13 與建築南面牆整合的新型非對稱透鏡壁複合拋物面集光器設計與光學評估 36 2.13 模擬軟體 37 2.13.1 LightTools介紹 37 2.13.2 參數靈敏度分析( Parameter Sensitivity Utility ) 37 3 第三章 設計原理與模型架構 38 3.1 設計構想 38 3.2 結構設計 39 3.2.1 具有圓弧微結構的片狀集光器( Sheet Concentrator with arc microstructure) 40 3.2.1.1 環狀微結構 40 3.2.1.2 環狀微結構聚光元件布林差集 41 3.2.1.3 導光板之建模 44 3.2.1.4 修剪拋物面以增加α方向上容忍角 46 3.2.1.5 環狀微結構陣列擺放 48 3.2.1.6 修改為具有圓弧微結構的片狀集光器 49 3.2.2 導光板( Light Guide Plate) 50 3.2.3 複合拋物集光器( Compound Parabolic Concentrator) 51 3.2.3.1 CPC介紹 51 3.2.3.2 加入Sapphire 53 3.2.3.3 更改CPC個數以達到更佳效能 56 3.2.4 堆疊 58 3.3 光源條件 63 3.3.1 光源張角 63 3.3.2 太陽光譜 AM 1.5 64 4 第四章 系統模型參數設計與優化 65 4.1 參數優化 65 4.1.1 具有圓弧微結構的片狀集光器層數 65 4.1.2 具有圓弧微結構片狀集光器的半徑 67 4.1.3 增加α方向上的容忍角 69 4.1.4 導光板厚度 71 4.1.5 導光板錐度 73 4.1.6 導光板開口大小 76 4.1.7 具有圓弧微結構片狀集光器的長度 77 4.1.8 具有圓弧微結構片狀集光器的寬度 78 4.1.9 CPC數量以及寬度 80 4.1.10 Sapphire切裁 82 4.1.11 CPC的輸出角度 84 4.2 集光器末端效率 88 4.3 兩組集光器堆疊計算介面反射的效能 92 4.4 太陽光譜AM1.5之下的集光效能 94 4.5 集光器尺寸大小對性能的影響 97 4.6 太陽光譜AM1.5之下不同材料的集光效能 99 4.7 追跡驗證 103 5 第五章 結論與未來展望 110 5.1 結論 110 5.2 未來展望 110 參考文獻 111

    [1] M. Buljan, J. Mendes-Lopes, P. Benítez, and J. Carlos Miñano, “Recent trends in concentrated photovoltaics concentrators’ architecture,” Journal of Photonics for Energy, 4, (2014).
    [2] J. P. Morgan, “Light-guide solar panel and method of fabrication thereof,” U.S. Patent No.US 7873257 B2 (2011).
    [3] P. Zamora, “Experimental characterization of Fresnel-Köhler concentrators,” J. Photonics Energy 2(1), 021806 (2012).
    [4] F. Duerr, P. Ben´ıtez, J. C. Mi˜ nano, Y. Meuret, and H. Thienpont, “spie newsroom Compact high-efficiency sunlight harvesting,” SPIE Newsroom, (2012).
    [5]維基百科-菲涅耳方程式https://zh.wikipedia.org/wiki/%E8%8F%B2%E6%B6%85%E8%80%B3%E6%96%B9%E7%A8%8B
    [6] J. Nilsson, R. Leutz, B. Karlsson, “Micro-structured reflector surfaces for a stationary asymmetric parabolic solar concentrator,” Solar Energy Materials & Solar Cells 91, 525-533 (2007).
    [7] J. H. Karp, E. J. T. and J. E. Ford, “Radial Coupling Method for Orthogonal Concentration within Planar Micro-Optic Solar Collectors,” OSA / SOLAR, (2010).
    [8] J. H. Huang, W. C. Fei, W. C. Hsu, J. C. Tsai, “Solar concentrator constructed with a circular prism array,” Appl. Opt Vol. 49, No. 23 (2010).
    [9] N. Sarmah, B. S. Richards, T. K. Mallick, “Evaluation and optimization of the optical performance of low-concentrating dielectric compound parabolic concentrator using ray-tracing methods,” Appl. Opt Vol. 50, 3303-3310 (2011).
    [10] P. Xie, H. C. Lin, Y. Liu, B. J. Li, ”Total internal reflection-based planar waveguide solar concentrator with symmetric air prisms as couplers,” Opt. Express A1389, Vol. 22, No. S6 (2014).

    [11] T. C. Teng, W. C. Lai, ”Planar solar concentrator featuring alignment-free total-internal-reflection collectors and an innovative compound tracker,” Optics Express, 22(S7), A1818-A1834 (2014).
    [12] C. Y. Tsai, “Improved irradiance distribution on high concentration solar cell using free-form concentrator,” Solar Energy 115, 694-707 (2015).
    [13] P. Li, J. Xie, J. Cheng, Y. N. Jiang, “Study on weak-light photovoltaic characteristics of solar cell with a microgroove lens array on glass substrate,” Opt. Express A199, Vol. 23, No. 7 (2015).
    [14] J. S. Price, X. Sheng, B. M. Meulblok, J. A. Rogers, N. C. Giebink, “Wide-angle planar microtracking for quasi-static microcell concentrating photovoltaics,” Nature Communications, (2015).
    [15] N. H. Vu, S. Shin, “A Concentrator Photovoltaic System Based on a Combination of Prism-Compound Parabolic Concentrators,” Energies 2016, 9, 645.
    [16] T. M. de Jong , D. K. G. de Boer, C. W. M. Bastiaansen, “Diffractive flat panel solar concentrators of a novel design,” Opt. Express A1138, 24, No. 14 (2016).
    [17] P. Yin, X. Xu, Z Jiang, “Ray-leakage-free planar solar concentrator featuring achromatic hybrid collectors and innovative secondary optical elements,” Opt. Commun. 402, 678-689 (2017).
    [18] Q. Xuan, G. Li, G. Pei,Y. Su ,J. Ji, “Design and Optical Evaluation of a Novel Asymmetric Lens-Walled Compound Parabolic Concentrator (ALCPC) Integration with Building South Wall,” Journal of Daylighting 4 26–36 (2017).
    [19] RefractiveIndex.INFO-Refractive index of 〖Al〗_2 O_3 https://refractiveindex.info/?shelf=main&book=Al2O3&page=Malitson-o
    [20] 中央氣象局-台灣四季太陽仰角與方位角https://www.cwb.gov.tw/V7/astronomy/cdata/calpdf/season.pdf

    下載圖示
    QR CODE