簡易檢索 / 詳目顯示

研究生: 王信翰
論文名稱: 探討高中生平面向量概念學習情況與評量工具之研發
An exploration of high school students' learning situation of vector concept and the development of assessment tool
指導教授: 譚克平
學位類別: 碩士
Master
系所名稱: 科學教育研究所
Graduate Institute of Science Education
論文出版年: 2014
畢業學年度: 102
論文頁數: 171
中文關鍵詞: 向量表徵內積學習情況
英文關鍵詞: vector, representation, inner product, learning situation
論文種類: 學術論文
相關次數: 點閱:219下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究之主要目的為探討高中學生學習平面向量概念之學習困難,並試著找出學生學習平面向量之後所應具備的能力為何?根據所探討的平面向量概念,訂定學生平面向量能力的四大向度,並依據訂定之四大向度發展評量工具進行施測,探討學生學習向量課程後是否達到應具有之能力。藉由探討錯誤成因,並依據訪談高中教師任課時之向量教學過程,期望瞭解高中生平面向量概念之學習情況。

    本研究之研究對象為臺北市某市立高中之高二自然組學生42位,及嘉義市某公立高中之自然組學生40位,利用研究者自行開發之向量能力紙筆測驗題本為研究工具,包括向量表徵、向量定義與概念、向量運算、向量內積與投影四大向度試題。而探討出學生錯誤成因之後訪談兩位任課教師,探究其學習過程與造成錯誤的原因及學生之學習困難。

    本研究之研究結果如下:
    1. 學生學習向量課程後所具備之向量能力四大向度分別為瞭解、詮釋及轉換向量表徵;瞭解向量的定義與其性質;能操作、理解向量之運算並瞭解向量之幾何意義;瞭解內積之幾何意義並計算向量之內積。
    2. 部分學生會將位移向量與方向向量之意義產生混淆。
    3. 在本研究中發現有部分學生將一向量的單位向量視為其本身。
    4. 部分學生認為兩向量平行且反向的情況下不存在夾角。
    5. 當兩向量的始點未重合的時候,部分學生仍然將兩向量的終點連線進行向量加法。
    6. 本研究中發現部分學生認為兩個向量若為平行,則不可做內積。

    This thesis aims to explore senior high school students' learning difficulties of vector concepts, and to figure out what ability students' should have learned about vectors after learning vector curriculums. According to the vector concept to explore, this thesis sets four dimensions about students' vector abilities. Based on these four vector ability dimensions, this thesis also developed an assessment tool about students' vector concept.

    Our research sample involved 82 senior high school students in Taipei City and Chiayi City, Taiwan. A test developed by the author was exploited as investigation tool which including four dimensions as vectors' representation, vectors' definition and properties, vectors' operation, and vectors' inner product and projections. In order to understand the learning difficulties in vector, the author also interviews teachers who teach in senior high school in Taipei and Chiayi. The findings are summarized as follows:

    1. Students' who have to equipped these abilities after learning vectors lessons which included four dimensions. These dimensions included vectors' representation, vectors' definition and properties, vectors' operation, and vectors' inner product and projections.
    2. Some students confused about the meaning of displacement vector and direction vector.
    3. Some students have a misconception about unit vector, which thought a unit vector is a vector which equivalent to itself.
    4. Some students think two vectors which are opposite and parallel have no angles.
    5. Some students use tail-to-tail method to operate vectors' addition, even if these vectors' starting point are not on the same point.
    6.Some students finds that if two vectors are parallel, they have no inner product.

    第壹章 緒論 ................................................1 第一節 研究動機 .............................................1 第二節 研究目的與研究問題 .....................................5 第三節 名詞界定與釋義 ........................................6 第四節 研究範圍與限制 ........................................7 第五節 研究重要性 ...........................................8 第貳章 文獻探討 .............................................9 第一節 向量的定義與性質 ......................................9 第二節 向量課程的教學與解題思維 ................................9 第三節 學生平面向量能力探討 ..................................17 第四節 平面向量教科書內容比較 ................................44 第五節 國內對於向量學習的相關研究 .............................48 第叁章 研究方法 ............................................54 第一節 研究設計 ............................................54 第二節 研究對象 ............................................54 第三節 研究工具的開發 .......................................55 第四節 研究步驟與過程 .......................................82 第五節 資料處理 ............................................82第肆章 資料分析 ............................................83 第一節 學生整體表現 .........................................83 第二節 向量表徵向度題組施測結果分析 ............................84 第三節 向量定義與性質題組施測結果分析 ..........................92 第四節 向量基本運算題組施測結果分析............................102 第五節 向量內積與投影題組施測結果分析 .........................116 第六節 教師訪談學生關於向量概念學習之分析 ......................126 第伍章 討論與建議 .........................................132 第一節 討論 ..............................................132 第二節 建議 ..............................................138 參考文獻 .................................................141 中文部分 .................................................141 西文部分 .................................................142 附錄一:向量能力紙筆測驗正式施測題本 ..........................147 附錄二:評分標準表 .........................................163 附錄三:評分者信度 .........................................166

    王志偉(2006)。高二學生向量概念融入複式評量的學習成效之研究(未出版之碩 士論文)。國立高雄師範大學,高雄市。
    王曉平(2002)。中學《平面向量》教學之我見—兼談中學與大學教學內容的銜接。 數學通報,12,23-24。
    丘志儀(2010)。向量法解題中的數學思想方法。數學之友, 8,54-55。
    江淑美(1985)。高一學生的向量概念發展。科學教育月刊,79,16-33。
    江慶育(2011)。國三學生在浮力情境中對作用力辨識與力平衡理解之探討(未出 版之碩士論文)。國立臺灣師範大學,臺北市。
    沈洪標(2010)。平面向量高考題型與教學走勢發展。數學學習與研究,13,48-48。
    余文卿等 (2011)。高中數學第3冊。臺南市:翰林書局。
    李永貞(2009)。高二學生在向量學習上主要錯誤類型及其補救教學之研究(未出 版之碩士論文)。國立臺灣師範大學,臺北市。
    李虎雄等(2011)。高中數學第3冊。新北市:康熹文化。
    林進發(2001)。桃園地區高中學生向量內積之運算及應用錯誤類型之研究(未出 版之碩士論文)。國立高雄師範大學,高雄市。
    林福來(1997)。教學思維發展:整合數學教學知識的敎材教法(1/3)。行政院國 家科學委員會專題研究計畫報告。
    林福來等(2004)。高中選修幾何學上冊。台南市:南一書局。
    林福來等(2011)。高中數學第3冊。台南市:南一書局。
    洪志瑋、謝豐瑞(2012)。高中生對於任意兩向量可否作內積之概念心像。中等教 育,63(4),16-37。
    洪志瑋(2013)。高中生關於向量內積的概念心像之探究(未出版之碩士論文)。國 立臺灣師範大學,臺北市。
    郭祝武(1996)。五專學生向量概念的錯誤分析與補救教學。南開學報,1, 221-228。
    孫利國(2010)。淺析向量理論的誕生及在中國的傳播。教育教學論壇,13, 49-49。
    陳俊廷(2002)。高中學生空間向量學習困難診斷測驗工具發展的研究(未出版之 碩士論文)。國立高雄師範大學,高雄市。
    陳雪梅(2007)。中學向量課程與教學的研究(博士論文)。取自 http://0-cnki50.csis.com.tw.opac.lib.ntnu.edu.tw/kns50/detail.asp x?dbname=CDFD2007&filename=2007082899.nh
    教育部(2008)。高中課程綱要(99)- 必修數學。台北市:教育部。取自
    http://mathcenter.ck.tp.edu.tw/MCenter/Ctrl/OpenFileContent.ashx?id=B3CTD4TD44RF8846673XCQRR3QQ4RRTH4J6H33Q3R33Q43RTT44J6832CBRD3T4D
    陸金菊(2010)。試論向量在幾何中的應用。山西廣播電視大學學報,74,49-50。
    項武義(2009)。基礎幾何學。台北市:五南書局。
    黃幸美(2010)。美國當代小學幾何課程發展及其對台灣幾何教學的啟示。教育研 究集刊,45,233-269。
    黃楷文(2012)。教具融入高中平面向量教學之成效研究(未出版之碩士論文)。國 立中央大學,桃園市。
    楊蕾(2009)。高中學生關於向量理解水平及其理解障礙研究(碩士論文)。取自
    http://cdmd.cnki.com.cn/Article/CDMD-10200-2009177394.htm
    楊壬孝等 (2010)。高中數學第3冊。新北市:全華書局。
    蔡聰明(1997)。一題多解的妙趣。科學月刊,334,816-822。
    龔昇、張德健(2007)。線性代數五講— 第一講 一些基本的代數結構。數學傳播, 122,21-31。

    Aguirre, J., & Erickson, G. (1984). Student's conceptions about the vector characteristics of three physics concepts. Journal of Research in Science Teaching, 21(5), 439-457.
    Asiala, M., Brown, A., DeVries, D., Dubinsky, E., Mathews, D., & Thomas, K. (1996). A framework for research and curriculum development in undergraduate mathematics education. Research in Collegiate Mathematics Education II, CBMS Issues in Mathematics Education, 6, 1–32.
    Barniol, P., & Zavala, G. (2009). Investigation of students' preconceptions and difficulties with the vector direction concept at a Mexican university. AIP Conference Proceedings, 1179, 85-88.
    Barniol, P., & Zavala, G. (2010). Students' understanding of the concept of vector components and vector products. AIP Conference Proceedings, 1289, 341-344.
    Barniol, P., & Zavala, G. (2012). Students' difficulties with unit vectors and scalar multiplication of a vector. AIP Conference Proceedings, 1413, 115-118. doi: 10.1063/1.3680007
    Barniol, P., & Zavala, G. (2014). Test of understanding of vectors: A reliable multiple-choice vector concept test. Physics Review ST Physics Education Research, 10(1), 010121(1-14). doi: http://dx.doi.org/10.1103/PhysRevSTPER.10.010121
    Basson, I. (2002). Physics and mathematics as interrelated fields of thought development using acceleration as an example. International Journal of Mathematical Education in Science and Technology, 33(5), 679-690.
    Dimitriadou, E., & Tzanakis, C. (2011). Secondary school students' difficulties with vector concepts and the use of geometrical & physical situations. Proceedings of the 6th European Summer University on the History and Epistemology in Mathematics Education (pp.487-501). Wien, Austria : Holzhausen Verlag.
    Dreyfus, T., Hillel, J. and Sierpinska, A. (1997). Coordinate-free geometry as an entry to linear algebra. In M. Hejny & J. Novotna (eds.), Proceedings of the European Research Conference on Mathematical Education (pp. 116-119). Podebrady/Prague, Czech Republic.
    Dreyfus, T., Hillel, J. and Sierpinska, A. (1998). Cabri based linear algebra : transformations. Proceedings of the First Conference of the European Society for Research in Mathematics Education, 1, 209-220.
    Dubinsky, E., & McDonald, M. A. (2001). APOS: A constructivist theory of learning in undergraduate mathematics education research, in Derek Holton, et al. (eds.), The Teaching and Learning of Mathematics at University Level: An ICMI Study (pp. 273–280). Dordrecht, Netherlands: Kluwer Academic Publishers.
    Flores, S., Kanim, S. E., & Kautz, C. H. (2004). Students use of vectors in introductory mechanics. American Journal of Physics, 72(4), 460-468. doi: http://dx.doi.org/10.1119/1.1648686
    Flores-García, S., Alfaro-Avena, L. L., Dena-Ornelas, O. and González-Quezada, M. D. (2008). Students' understanding of vectors in the context of forces. Revista Mexicana de Fisica, 54, 7-14.
    Forster, P. (2000). Process and object interpretations of vector magnitude mediated by use of graphics calculator. Mathematics Education Research Journal, 12(3), 269-285.
    Freudenthal, H. (1973). Mathematics as an Educational Task. Dordrecht, Netherlands: D. Reidel.
    Friedberg, S. H., Insel, A. J., & Spence, L. E. (2003). Linear Algebra(4th Ed. ). Upper Saddle River, NJ : Prentice Hall.
    Fynn, A. B. (2010). Vectors in Climbing. The Montana Mathematics Enthusiast, 7(2), 295-306.
    Gagatsis, A., & Dimitriadou, H. (2001). Classical versus vector geometry in problem solving. An empirical research among Greek secondary pupils. International Journal of Mathematical Education in Science and Technology, 32(1), 105-125. doi: http://dx.doi.org/10.1080/00207390120135
    Golding, G., & O'Donoghue, J. (2005). A Constructivist approach to identifying the mathematical knowledge gaps of adults learning advanced mathematics. Proceedings of First National Conference on Research on Mathematics Education, 291-305.
    Hart, K. M. (ed.)(1981). Children's Understanding of Mathematics: 11-16. London, England: Anthony Rowe Publishing.
    Hawkins, J. M., Thompson, J. R., & Wittmann, M. C. (2009). Students' consistency of graphical vector addition method on 2-D vector addition tasks. Physics Education Research Conference Proceedings, 1179, 161-164.
    Hayfa, N. (2006). Impact of language on conceptualization of the vector. For the Learning of Mathematics, 26(2), 36-40. doi: 10.2307/40248535
    Hillel, J. (2002). Modes of description and the problem of representation in linear algebra, in Dorier, J.-L. (ed.), The teaching of Linear Algebra in Question(pp.191-207). Dordrecht, Netherlands: Kluwer Academic Publishers.
    Jagger, J. M. (1988). A report on a questionnaire designed to test students' understanding of mechanics. Teaching Mathematics and its applications, 7(1), 35-41.
    Knight, R. D. (1995). The vector knowledge of beginning physics students. The Physics teacher, 33(2), 74-78.
    Lesh, R., Post, T., & Behr, M. (1987). Representations and Translations among Representations in Mathematics Learning and Problem Solving. In C. Janvier, (Ed.), Problems of Representations in the Teaching and Learning of Mathematics (pp. 33-40). Hillsdale, NJ: Lawrence Erlbaum.
    Megowan, C. (2005). Vectors-at the confluence of physics and mathematics. Retrieved from http://www.realstem.com/MegowanUnpublishedWorks/ Megowan-vectors%20CF.pdf
    Meserve, B. E. (1970). Geometry in Secondary Schools. [Washington, D.C.] : Distributed by ERIC Clearinghouse, http://www.eric.ed.gov/contentdelivery /servlet/ERICServlet?accno=ED047948
    Nguyen, N. L., & Meltzer, D. E. (2003). Initial understanding of vector concepts among students in introductory physics courses. American Journal of Physics, 71(6),630-608. doi : http://dx.doi.org/10.1119/1.1571831
    Pavlakos, G., Spyrou, P., &Gagatsis, A. (2005). The role of understanding the vectors. In A. Gagatsis, F. Spagnolo, Gr. Makrides and V. Farmaki (Eds.), Proceeding of the 4th Mediterranean Conference on Mathematics Education: Vol I (pp.201-214). Palermo, Italy: University of Palermo, Cyprus Mathematical Society.
    Poytner, A. (2004). Mathematical embodiment and understanding. Proceedings of the British Society for Research into Learning Mathematics, 24(3), 39-44.
    Poytner, A., & Tall, D. (2005). What do mathematics and physics teachers think that students will find difficult? A challenge to accepted practices of teaching. Research Proceedings of the Sixth British Congress of Mathematics Education, 25(1), 128-135.
    Roche, J. (1997). Introducing vectors. Physics Education, 32, 339-345. doi: 10.1088/0031-9120/32/5/018
    Rosenbloom, P. C. (1969). Vectors and symmetry. Educational Studies in Mathematics, 2(2-3),405-414.
    Ruddock, G. J. (1981). Vectors and matrices. In Hart, K. M. (ed.). Children's Understanding of Mathematics: 11-16 (pp. 158-179). London, UK: Anthony Rowe Publishing.
    Saarelainen, M., Laaksonen, A., & Hirvonen, P. E. (2007). Students' initial knowledge of electric and magnetic fields-more profound explanations and reasoning models for undesired conceptions. European Journal of Physics, 28, 51-60. doi: 10.1088/0143-0807/28/1/006
    Shaffer, P. S., & McDermott, L. C. (2005). A research-based approach to improving student understanding of the vector nature of kinematical concepts. American Journal of Physics, 73(10),921-931. doi: 10.1119/1.2000976
    Tanel, R., & Tanel, Z. (2010). A study for physics teacher candidates to reduce the learning difficulties and misconceptions related to vectors. Balkan Physics Letter, 18, 131-137.
    Van Deventer, J., & Wittmann, M. C. (2007). Comparing student use of mathematical and physical vector representations, AIP Conference Proceedings, 951, 208-211. doi: 10.1063/1.2820935
    Van Deventer, J. (2008). Comparing students performance on isomorphic math and physics vector presentation. (Master Thesis, The University of Maine). Retrieved from http://umaine.edu/center/files/2009/12/Vandeventer_Thesis.pdf
    Wang, T. R., & Sayre, E. C. (2010). Maximum Likelihood Estimation (MLE) of students’ understanding of vector subtraction. Paper presented at Physics Education Research Conference 2010, Portland, Oregon. Retrieved from http://www.compadre.org/Repository/document/ServeFile.cfm?ID=10496&DocID=1952
    Watson, A., & Tall, D. (2002). Embodied action, effect and symbol in mathematical growth. Proceedings of the 26th Conference of the International Group for the Psychology of Mathematics Education, 4, 369-376.
    Watson, A., Spyrou, P., & Tall, D. (2003). The relationship between physical embodiment and mathematical symbolism: the concept of vector. The Mediterrean Journal of Mathematics Education, 1(2), 73-97.
    Watts, D. M. (1983). A study of schoolchildren's alternative frameworks of the concept of force. European Journal of Science Education, 5(2), 217-230.
    Wutchana, U., & Emarat, N. (2011). Students' Understanding of graphical vector addition in one and two dimensions. Eurasian Journal of Physics and Chemistry Education, 3(2), 102-111.

    下載圖示
    QR CODE