簡易檢索 / 詳目顯示

研究生: 邵譯德
Shao, Yi-Te
論文名稱: 不同阻力運動強度對健康男性食慾之影響
Effect of resistance exercise intensity on appetite in healthy men.
指導教授: 劉宏文
Liu, Hung-Wen
口試委員: 徐孟達
Hsu, Mong-Da
程一雄
Cheng, I-Shiung
劉宏文
Liu, Hung-Wen
口試日期: 2022/01/13
學位類別: 碩士
Master
系所名稱: 體育與運動科學系
Department of Physical Education and Sport Sciences
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 65
中文關鍵詞: 食慾視覺量表食慾抑制等訓練量體重管理
英文關鍵詞: appetite visual scale, appetite suppression, equal volume, weight management
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202200687
論文種類: 學術論文
相關次數: 點閱:155下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 前言:生活型態的改變和高熱量的飲食,造成能量失衡和身體質量上升。食慾與能量平衡有著密不可分的關係,其影響因素有身體活動和食慾荷爾蒙。運動對於體重管理是相當重要的手段之一,亦可以降低罹患代謝、心血管、癌症等疾病的風險。過往研究多為單次有氧運動介入或單次有氧與阻力運動相互比較對食慾之影響,尚無研究觀察單次不同強度阻力運動介入後食慾之變化。目的:探討不同強度阻力運動對健康男性食慾及相關荷爾蒙的影響。方法:招募11名健康男性作為受試者,以隨機交叉設計進行控制介入、低強度介入 (45% 8RM) 和高強度介入 (85% 8RM),共三次試驗,每次試驗間隔一週。受試者使用史密斯機執行四項阻力運動動作,包含深蹲、站姿划船、臥推與羅馬尼亞硬舉。試驗過程依照標準流程測量身體組成、食慾荷爾蒙、乳酸以及食慾視覺類比量表。所得結果以重複量數二因子變異數分析進行統計分析。結果:食慾視覺量表中飢餓感在高強度與低強度介入後30分和60分顯著上升 (高強度:介入前3.93 ± 0.35 cm、介入後30分5.53 ± 0.95 cm、介入後60分6.66 ± 0.29 cm;低強度:介入前 4.34 ± 0.41 cm、介入後30分5.75 ± 0.27 cm、介入後60分6.09 ± 0.48 cm;p < .05)。其他飽足感、滿腹感與預期進食阻力運動介入後皆未達顯著水準。高強度與低強度兩次試驗的乳酸濃度在運動介入後立即的時間點並無顯著差異,但顯著高於控制介入 (高強度:12.32 ± 1.03mmol/L, 低強度:12 ± 1.05mmol/L, 控制組:1.62 ± 0.09mmol/L; p < .05)。兩種強度的PYY濃度在介入後立即顯著上升 (高強度:介入前12.46 ± 1.4pg/ml vs 介入後立即17.42 ± 2.7pg/ml;低強度:介入前10.63 ± 1.29pg/ml vs介入後立即17.09 ± 1.8pg/ml ; p < .05)。飢餓素不同介入下及介入前後也無顯著差異 (p < .05)。高強度與低強度產生之乳酸與飢餓素呈中度負相關 (高強度: r = -0.325, 低強度: r = -0.448, p < .05)。結論:單次等訓練量不同強度阻力運動後可知訓練量是影響主觀食慾和飢餓素的主要因子,以及乳酸濃度上升可能會抑制飢餓素進而影響主觀食慾。

    Introduction: Changing of lifestyle and high calorie diet could lead to energy unbalance and body mass increasing. Appetite, highly related to energy balance, is mediated by physical activity and appetite hormones. Regular exercise is one of the most important weight-managing methods to lower the risk of metabolism, cardiovascular disease and cancer. Previous studies mostly focused on the effect of acute aerobic exercise on appetite, or the comparison between acute aerobic and resistance exercise. However, there is lack of research examining the change of appetite after different-intensity resistance exercise. Purpose: This study investigated the effect of resistance exercise with different intensity on appetite and appetite hormones in healthy men. Methods: Eleven healthy men were recruited to complete three trials in randomized crossover design: including low load (45% 8RM), high load (85% 8RM) resistance exercise and resting for the control condition. Participants performed four exercise, including Romanian dead lift, bench press, squat and stand row on Smith machine. Every trial was executed the same standard procedure of measuring body composition index, lactate, appetite visual scale and appetite hormones with at least seven-day interval. The obtained data were statistically proceeded by two-way repeated measures ANOVA analysis. Results: Significant increase of hunger ratings was observed at both thirty and sixty minutes after high and low intensity intervention resistance exercise trial. (High: pre 3.93 ± 0.35 cm, post30 5.53 ± 0.95 cm, post60 6.66 ± 0.29 cm; Low: pre 4.34 ± 0.41 cm, post30 5.75 ± 0.27 cm, post60 6.66 ± 0.29 cm; p < .05). There was no significant difference in other appetite rating, nor was no significant difference on lactate concentration between high and low intensity trial at immediately after exercise, but both exercise trials were significantly higher than control trial (High: 12.32 ± 1.03mmol/L, Low: 12 ± 1.05mmol/L, Con: 1.62 ± 0.09mmol/L; p < .05). PYY concentration significantly raised after both exercises in postexercise (High: pre 12.46 ± 1.4pg/ml vs post0 17.42 ± 2.7pg/ml;Low: pre 10.63 ± 1.29pg/ml vs post0 17.09 ± 1.8pg/ml ; p < .05) Ghrelin concentration was unchanged with exercise and intensity (p < .05). There was a negative and moderate significant correlation between lactate and ghrelin for high and low intensity (High: r = -0.325, Low: r = -0.448, p < .05). Conclusions: After single bout of equal-volume resistance exercise, we could conclude that volume and lactate concentration are the two main factor influencing appetite and ghrelin in healthy young men.

    第壹章 緒論 1 第一節 研究背景 1 第二節 研究目的 2 第三節 研究假設 2 第四節 名詞操作性定義 2 第五節 研究範圍與限制 3 第六節 研究重要性 3 第貳章 文獻探討 5 第一節 食慾荷爾蒙 5 第二節 有氧運動對食慾之影響 11 第三節 阻力運動對食慾之影響 18 第四節 本章總結 21 第參章 研究方法 22 第一節 研究對象 22 第二節 實驗時間與地點 22 第三節 實驗流程 23 第四節 測量工具與方法 24 第五節 資料處理及統計分析 28 第肆章 結果 29 第一節 受試者基本資料 29 第二節 食慾視覺量表 31 第三節 乳酸 39 第四節 食慾荷爾蒙 40 第伍章 討論 47 第一節 不同強度阻力運動介入對食慾視覺量表之影響 47 第二節 不同強度阻力運動介入和介入後乳酸對食慾荷爾蒙之影響 48 第三節 結論與建議 49 參考文獻 50 附錄 54

    Abdessemed, D., Duché, P., Hautier, C., Poumarat, G., & Bedu, M. (1999). Effect of recovery duration on muscular power and blood lactate during the bench press exercise. Int J Sports Med, 20(6), 368-373. doi:10.1055/s-2007-971146
    Balaguera-Cortes, L., Wallman, K. E., Fairchild, T. J., & Guelfi, K. J. (2011). Energy intake and appetite-related hormones following acute aerobic and resistance exercise. Appl Physiol Nutr Metab, 36(6), 958-966. doi:10.1139/h11-121
    Ballantyne, G. H. (2006). Peptide YY(1-36) and peptide YY(3-36): Part I. Distribution, release and actions. Obes Surg, 16(5), 651-658. doi:10.1381/096089206776944959
    Ballard, T. P., Melby, C. L., Camus, H., Cianciulli, M., Pitts, J., Schmidt, S., & Hickey, M. S. (2009). Effect of resistance exercise, with or without carbohydrate supplementation, on plasma ghrelin concentrations and postexercise hunger and food intake. Metabolism, 58(8), 1191-1199. doi:10.1016/j.metabol.2009.03.018
    Bilski, J., Teległów, A., Zahradnik-Bilska, J., Dembiński, A., & Warzecha, Z. (2009). Effects of Exercise on Appetite and Food Intake Regulation. Medicina Sportiva, 13, 82-94. doi:10.2478/v10036-009-0014-5
    Blundell, J. E., Gibbons, C., Caudwell, P., Finlayson, G., & Hopkins, M. (2015). Appetite control and energy balance: impact of exercise. Obes Rev, 16 Suppl 1, 67-76. doi:10.1111/obr.12257
    Broom, D. R., Batterham, R. L., King, J. A., & Stensel, D. J. (2009). Influence of resistance and aerobic exercise on hunger, circulating levels of acylated ghrelin, and peptide YY in healthy males. Am J Physiol Regul Integr Comp Physiol, 296(1), R29-35. doi:10.1152/ajpregu.90706.2008
    Deighton, K., Barry, R., Connon, C. E., & Stensel, D. J. (2013). Appetite, gut hormone and energy intake responses to low volume sprint interval and traditional endurance exercise. Eur J Appl Physiol, 113(5), 1147-1156. doi:10.1007/s00421-012-2535-1
    Dockray, G. J. (2012). Cholecystokinin. Curr Opin Endocrinol Diabetes Obes, 19(1), 8-12. doi:10.1097/MED.0b013e32834eb77d
    Dodd, G. T., & Tiganis, T. (2017). Insulin action in the brain: Roles in energy and glucose homeostasis. J Neuroendocrinol, 29(10). doi:10.1111/jne.12513
    Dorling, J., Broom, D. R., Burns, S. F., Clayton, D. J., Deighton, K., James, L. J., . . . Stensel, D. J. (2018). Acute and Chronic Effects of Exercise on Appetite, Energy Intake, and Appetite-Related Hormones: The Modulating Effect of Adiposity, Sex, and Habitual Physical Activity. Nutrients, 10(9). doi:10.3390/nu10091140
    Earle, R. W. (2006). Weight training exercise prescription. In Essentials of personal training symposium workbook. Lincoln, NE: NSCA Certification Commission.
    Engelstoft, M. S., Park, W. M., Sakata, I., Kristensen, L. V., Husted, A. S., Osborne-Lawrence, S., . . . Schwartz, T. W. (2013). Seven transmembrane G protein-coupled receptor repertoire of gastric ghrelin cells. Mol Metab, 2(4), 376-392. doi:10.1016/j.molmet.2013.08.006
    Freitas, M. C., Ricci-Vitor, A. L., de Oliveira, J., Quizzini, G. H., Vanderlei, L. C. M., Silva, B. S. A., . . . Rossi, F. E. (2019). Appetite Is Suppressed After Full-Body Resistance Exercise Compared With Split-Body Resistance Exercise: The Potential Influence of Lactate and Autonomic Modulation. J Strength Cond Res. doi:10.1519/jsc.0000000000003192
    Gao, Q., & Horvath, T. L. (2007). Neurobiology of feeding and energy expenditure. Annu Rev Neurosci, 30, 367-398. doi:10.1146/annurev.neuro.30.051606.094324
    Hallworth, J. R., Copeland, J. L., Doan, J., & Hazell, T. J. (2017). The Effect of Exercise Intensity on Total PYY and GLP-1 in Healthy Females: A Pilot Study. J Nutr Metab, 2017, 4823102. doi:10.1155/2017/4823102
    Harrold, J. A., Dovey, T. M., Blundell, J. E., & Halford, J. C. (2012). CNS regulation of appetite. Neuropharmacology, 63(1), 3-17. doi:10.1016/j.neuropharm.2012.01.007
    Hawkes, C. (2006). Uneven dietary development: linking the policies and processes of globalization with the nutrition transition, obesity and diet-related chronic diseases. Globalization and Health, 2(1), 4. doi:10.1186/1744-8603-2-4
    Hazell, T. J., Islam, H., Hallworth, J. R., & Copeland, J. L. (2017). Total PYY and GLP-1 responses to submaximal continuous and supramaximal sprint interval cycling in men. Appetite, 108, 238-244. doi:10.1016/j.appet.2016.10.006
    Hazell, T. J., Islam, H., Townsend, L. K., Schmale, M. S., & Copeland, J. L. (2016). Effects of exercise intensity on plasma concentrations of appetite-regulating hormones: Potential mechanisms. Appetite, 98, 80-88. doi:10.1016/j.appet.2015.12.016
    Hazell, T. J., Townsend, L. K., Hallworth, J. R., Doan, J., & Copeland, J. L. (2017). Sex differences in the response of total PYY and GLP-1 to moderate-intensity continuous and sprint interval cycling exercise. Eur J Appl Physiol, 117(3), 431-440. doi:10.1007/s00421-017-3547-7
    Holliday, A., & Blannin, A. (2017). Appetite, food intake and gut hormone responses to intense aerobic exercise of different duration. J Endocrinol, 235(3), 193-205. doi:10.1530/JOE-16-0570
    Holst, J. J. (2007). The physiology of glucagon-like peptide 1. Physiol Rev, 87(4), 1409-1439. doi:10.1152/physrev.00034.2006
    Inui, A., Okita, M., Miura, M., Hirosue, Y., Mizuno, N., Baba, S., & Kasuga, M. (1993). Plasma and cerebroventricular fluid levels of pancreatic polypeptide in the dog: effects of feeding, insulin-induced hypoglycemia, and physical exercise. Endocrinology, 132(3), 1235-1239. doi:10.1210/endo.132.3.8440184
    Katsuura, G., Asakawa, A., & Inui, A. (2002). Roles of pancreatic polypeptide in regulation of food intake. Peptides, 23(2), 323-329. doi:10.1016/s0196-9781(01)00604-0
    Kawano, H., Mineta, M., Asaka, M., Miyashita, M., Numao, S., Gando, Y., . . . Higuchi, M. (2013). Effects of different modes of exercise on appetite and appetite-regulating hormones. Appetite, 66, 26-33. doi:10.1016/j.appet.2013.01.017
    Larsen, P. S., Donges, C. E., Guelfi, K. J., Smith, G. C., Adams, D. R., & Duffield, R. (2017). Effects of Aerobic, Strength or Combined Exercise on Perceived Appetite and Appetite-Related Hormones in Inactive Middle-Aged Men. Int J Sport Nutr Exerc Metab, 27(5), 389-398. doi:10.1123/ijsnem.2017-0144
    Little, T. J., Horowitz, M., & Feinle-Bisset, C. (2005). Role of cholecystokinin in appetite control and body weight regulation. Obes Rev, 6(4), 297-306. doi:10.1111/j.1467-789X.2005.00212.x
    Martins, C., Stensvold, D., Finlayson, G., Holst, J., Wisloff, U., Kulseng, B., . . . King, N. A. (2015). Effect of moderate- and high-intensity acute exercise on appetite in obese individuals. Med Sci Sports Exerc, 47(1), 40-48. doi:10.1249/MSS.0000000000000372
    McCarthy, S. F., Islam, H., & Hazell, T. J. (2020). The emerging role of lactate as a mediator of exercise-induced appetite suppression. American Journal of Physiology-Endocrinology and Metabolism, 319(4), E814-E819. doi:10.1152/ajpendo.00256.2020
    McGowan, B. M., & Bloom, S. R. (2004). Peptide YY and appetite control. Curr Opin Pharmacol, 4(6), 583-588. doi:10.1016/j.coph.2004.06.007
    Munzberg, H., & Morrison, C. D. (2015). Structure, production and signaling of leptin. Metabolism, 64(1), 13-23. doi:10.1016/j.metabol.2014.09.010
    Pan, W. W., & Myers, M. G., Jr. (2018). Leptin and the maintenance of elevated body weight. Nat Rev Neurosci, 19(2), 95-105. doi:10.1038/nrn.2017.168
    Robinson, S. L., Hattersley, J., Frost, G. S., Chambers, E. S., & Wallis, G. A. (2015). Maximal fat oxidation during exercise is positively associated with 24-hour fat oxidation and insulin sensitivity in young, healthy men. J Appl Physiol (1985), 118(11), 1415-1422. doi:10.1152/japplphysiol.00058.2015
    Rogatzki, M. J., Wright, G. A., Mikat, R. P., & Brice, A. G. (2014). Blood ammonium and lactate accumulation response to different training protocols using the parallel squat exercise. J Strength Cond Res, 28(4), 1113-1118. doi:10.1519/JSC.0b013e3182a1f84e
    Schwartz, M. W., & Morton, G. J. (2002). Keeping hunger at bay. Nature, 418(6898), 595-597. doi:10.1038/418595a
    Shah, M., & Vella, A. (2014). Effects of GLP-1 on appetite and weight. Rev Endocr Metab Disord, 15(3), 181-187. doi:10.1007/s11154-014-9289-5
    Sim, A. Y., Wallman, K. E., Fairchild, T. J., & Guelfi, K. J. (2014). High-intensity intermittent exercise attenuates ad-libitum energy intake. Int J Obes (Lond), 38(3), 417-422. doi:10.1038/ijo.2013.102
    Sohn, J. W. (2015). Network of hypothalamic neurons that control appetite. BMB Rep, 48(4), 229-233. doi:10.5483/bmbrep.2015.48.4.272
    Thackray, A. E., Deighton, K., King, J. A., & Stensel, D. J. (2016). Exercise, Appetite and Weight Control: Are There Differences between Men and Women? Nutrients, 8(9). doi:10.3390/nu8090583
    Thornton, M. K., & Potteiger, J. A. (2002). Effects of resistance exercise bouts of different intensities but equal work on EPOC. Med Sci Sports Exerc, 34(4), 715-722. doi:10.1097/00005768-200204000-00024
    Ueda, S. Y., Yoshikawa, T., Katsura, Y., Usui, T., & Fujimoto, S. (2009). Comparable effects of moderate intensity exercise on changes in anorectic gut hormone levels and energy intake to high intensity exercise. J Endocrinol, 203(3), 357-364. doi:10.1677/joe-09-0190
    Unick, J. L., Otto, A. D., Goodpaster, B. H., Helsel, D. L., Pellegrini, C. A., & Jakicic, J. M. (2010). Acute effect of walking on energy intake in overweight/obese women. Appetite, 55(3), 413-419. doi:https://doi.org/10.1016/j.appet.2010.07.012
    van Bloemendaal, L., Ten Kulve, J. S., la Fleur, S. E., Ijzerman, R. G., & Diamant, M. (2014). Effects of glucagon-like peptide 1 on appetite and body weight: focus on the CNS. J Endocrinol, 221(1), T1-16. doi:10.1530/JOE-13-0414
    Whitlock, G., Lewington, S., Sherliker, P., Clarke, R., Emberson, J., Halsey, J., . . . Peto, R. (2009). Body-mass index and cause-specific mortality in 900 000 adults: collaborative analyses of 57 prospective studies. Lancet, 373(9669), 1083-1096. doi:10.1016/s0140-6736(09)60318-4
    Yanagi, S., Sato, T., Kangawa, K., & Nakazato, M. (2018). The Homeostatic Force of Ghrelin. Cell Metab, 27(4), 786-804. doi:10.1016/j.cmet.2018.02.008

    無法下載圖示 電子全文延後公開
    2027/06/30
    QR CODE