簡易檢索 / 詳目顯示

研究生: 蔡昀雯
Tsai, Yun-Wen
論文名稱: 文本、圖片與募資專案
Texts, Photos and Crowdfunding Projects
指導教授: 林舒柔
Lin, Shu-Jou
口試委員: 林舒柔
Lin, Shu-Jou
何宗武
Ho, Tsung-Wu
郭曉玲
Guo, Shiau-Ling
口試日期: 2024/09/27
學位類別: 碩士
Master
系所名稱: 全球經營與策略研究所
Graduate Institute of Global Business and Strategy
論文出版年: 2025
畢業學年度: 113
語文別: 英文
論文頁數: 66
中文關鍵詞: 永續時尚群眾募資Kickstarter文字探勘情緒分析圖片色彩和諧度專案成功
英文關鍵詞: Sustainable Fashion, Crowdfunding, Kickstarter, Text Mining, Sentiment Analysis, Image Color Harmony, Project Success
研究方法: 半結構式訪談法Empirical Study
DOI URL: http://doi.org/10.6345/NTNU202500183
論文種類: 學術論文
相關次數: 點閱:31下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 科技資訊的高度發展和流通,讓「時尚」不再是少數族群特殊的生活情趣,而是人人能一指網路下訂的日常所需。然而,傳統服裝零售產業從設計、生產、配送到銷售的流程,運行得如此快速且具成本優勢,讓因近年環保意識抬頭的永續時尚小品牌,在市場的考驗下依舊步履蹣跚。即便市場上已有一些頗具知名度的永續時尚案例,部份市調機構也發出市調報告證明市場規模的潛在發展空間,但距離讓永續時尚融入一般大眾購買時尚單品的決策過程,仍然有些許進步空間,許多初創的永續時尚品牌在市場中因資金問題艱難的踽踽獨行。

    本研究透過應用文字探勘與圖片色彩分析,探討知名募資平台Kickstarter上永續時尚類別專案的募資情況,分析影響消費者支持永續時尚品牌的因素。研究結果顯示,文本情緒、文本品質與圖片色彩和諧度對專案成功的影響有限,但圖片數量與創作者行為模式等實用因素,可能相較於假設變數具有更顯著的作用。本研究期望為永續時尚小品牌提供經營與募資上的策略建議,吸引更多消費者參與永續時尚的消費市場,進一步促進品牌的發展與永續理念的傳播。

    With highly developed and accessible technology, fashion has become a part of daily life. People can now easily buy clothes with just a few clicks. However, traditional fashion retail has cost advantages in design, production, and sales, which makes it hard for small sustainable fashion brands to compete. Although some well-known sustainable fashion brands exist, and research reports suggest market potential, integrating sustainable fashion into consumers’ daily purchasing decisions remains challenging. Many sustainable fashion start-ups face funding problems and struggle to attract enough support in the market.

    This study explores the factors that influence consumers to support sustainable fashion projects on the crowdfunding platform Kickstarter. Using text mining and image color analysis, the study examines how textual sentiment, text quality, and image color harmony affect project success. The results suggest that these factors may have a limited direct impact, while practical elements, such as the quantity of images and creator behavior patterns, might play a more significant role compared to hypothesized variables. These findings provide suggestions for small sustainable fashion brands to improve their management and fundraising strategies, potentially encouraging more consumer participation in the sustainable fashion market.

    中文摘要 i Abstract ii List of Tables v List of Figures v Chapter 1: Introduction 1 1.1 Research Background and Motivation 1 1.2 Research Hypotheses 2 Chapter 2: Literature Review 3 2.1 Sustainable Fashion and Crowdfunding Platforms 3 2.2 Sentiment Analysis 4 2.3 Textual Quality 6 2.4 Image Analysis 7 Chapter 3: Research Methodology 10 3.1 Pilot Study 10 3.1.1 Interview Participants 10 3.1.2 Interview Outline 12 3.1.3 Content Analysis 13 3.1.4 Pilot Study Conclusions 19 3.2 Data Sources and Collection 20 3.3 Variable Explanations 21 3.4 Textual Quality 22 3.4.1 Word Count 23 3.4.2 Readability 23 3.5 Sentiment Analysis 25 3.6 Image Color Analysis 26 3.6.1 Color Moments 26 3.6.2 Color Space Density 28 3.6.3 Color Tone Contrast 29 3.6.4 Lightness Contrast 29 3.6.5 Cool/Warm Contrast 30 Chapter 4: Basic Analysis and Descriptive Statistics 31 4.1 Descriptive Statistics 31 4.1.1 Dependent and Control Variables 31 4.1.2 Text Data 34 4.1.3 Image Color Data 36 4.2 Correlation Coefficients 50 Chapter 5: Model Analysis and Conclusions 52 5.1 Predictive Model Analysis and Testing 52 5.1.1 Multicollinearity Checks 53 5.1.2 Predictive Model Comparisons 55 5.1.3 Results of Models with Stepwise Hypothesis Variables 58 5.2 Research Conclusions 60 References 64

    Barnes, S. J. (2022). In living color? Understanding the importance of color complexity in listing images for accommodation sharing. Tourism Management, 90, 104487.
    Barnes, S. J. (2022, 16-18 Nov. 2022). The Role of Color Complexity and Socialness of Listings in Crowdfunding Success. 2022 International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME),
    Bickmore, T., & Cassell, J. (2001). Relational agents: a model and implementation of building user trust. Proceedings of the SIGCHI conference on Human factors in computing systems,
    Brown, T. E., Boon, E., & Pitt, L. F. (2017). Seeking funding in order to sell: Crowdfunding as a marketing tool. Business Horizons, 60(2), 189-195.
    Chan, T. Y., & Wong, C. W. Y. (2012). The consumption side of sustainable fashion supply chain. Journal of Fashion Marketing and Management: An International Journal, 16(2), 193-215.
    Dale, E., & Chall, J. S. (1948). A Formula for Predicting Readability: Instructions. Educational Research Bulletin, 27(2), 37-54.
    Dalla Chiesa, C., Pavlova, A., Lavanga, M., & Pysana, N. (2022). When fashion meets crowdfunding: exploring sustainable and innovative features of online campaigns. Journal of Fashion Marketing and Management: An International Journal.
    Dang, N. C., Moreno-García, M. N., & De La Prieta, F. (2020). Sentiment Analysis Based on Deep Learning: A Comparative Study. Electronics, 9(3), 483.
    De Crescenzo, V., Ribeiro-Soriano, D. E., & Covin, J. G. (2020). Exploring the viability of equity crowdfunding as a fundraising instrument: A configurational analysis of contingency factors that lead to crowdfunding success and failure. Journal of Business Research, 115, 348-356.
    Devika, M. D., Sunitha, C., & Ganesh, A. (2016). Sentiment Analysis: A Comparative Study on Different Approaches. Procedia Computer Science, 87, 44-49.
    Duggal, H., & Singh, P. (2012). Comparative Study of the Performance of M5-Rules Algorithm with Different Algorithms. Journal of Software Engineering and Applications, 05(04), 270-276.
    Flesch, R. (1948). A new readability yardstick. Journal of applied psychology, 32(3), 221.
    Gerber, E. M., & Hui, J. (2013). Crowdfunding: Motivations and deterrents for participation. ACM Transactions on Computer-Human Interaction (TOCHI), 20(6), 1-32.
    Hekkert, P. (2006). Design aesthetics: principles of pleasure in design. Psychology science, 48(2), 157.
    Ho, S. S. H., Oh, C. H., & Shapiro, D. (2022). Can Corporate Social Responsibility Lead to Social License? A Sentiment and Emotion Analysis. Journal of Management Studies.
    Hu, M., Li, X., & Shi, M. (2015). Product and Pricing Decisions in Crowdfunding. Marketing Science, 34(3), 331-345.
    Hu, Y., Manikonda, L., & Kambhampati, S. (2014). What We Instagram: A First Analysis of Instagram Photo Content and User Types. Proceedings of the International AAAI Conference on Web and Social Media, 8(1), 595-598.
    Hutto, C., & Gilbert, E. (2014). Vader: A parsimonious rule-based model for sentiment analysis of social media text. Proceedings of the International AAAI Conference on Web and Social Media,
    Kapočiūtė-Dzikienė, J., Damaševičius, R., & Woźniak, M. (2019). Sentiment Analysis of Lithuanian Texts Using Traditional and Deep Learning Approaches. Computers, 8(1), 4.
    Kim, E., & Suk, H. J. (2018). Image color adjustment for harmony with a target color. Color Research & Application, 43(1), 75-88.
    Kim, J. H., & Kim, Y. (2019). Instagram user characteristics and the color of their photos: Colorfulness, color diversity, and color harmony. Information Processing & Management, 56(4), 1494-1505.
    Koffka, K. (2013). Principles of Gestalt psychology (Vol. 44). routledge.
    Li, L., Goh, T.-T., & Jin, D. (2020). How textual quality of online reviews affect classification performance: a case of deep learning sentiment analysis. Neural Computing and Applications, 32(9), 4387-4415.
    Lundblad, L., & Davies, I. A. (2016). The values and motivations behind sustainable fashion consumption. Journal of Consumer Behaviour, 15(2), 149-162.
    Niinimäki, K. (2010). Eco-clothing, consumer identity and ideology. Sustainable Development, 18(3), 150-162.
    Ou, L. C., Luo, M. R., Woodcock, A., & Wright, A. (2004). A study of colour emotion and colour preference. Part I: Colour emotions for single colours. Color Research & Application, 29(3), 232-240.
    Ou, L. C., Yuan, Y., Sato, T., Lee, W. Y., Szabó, F., Sueeprasan, S., & Huertas, R. (2018). Universal models of colour emotion and colour harmony. Color Research & Application, 43(5), 736-748.
    Popović, M., Lommel, A., Burchardt, A., Avramidis, E., & Uszkoreit, H. (2014). Relations between different types of post-editing operations, cognitive effort and temporal effort. Proceedings of the 17th annual conference of the european association for machine translation,
    Reber, R., Schwarz, N., & Winkielman, P. (2004). Processing Fluency and Aesthetic Pleasure: Is Beauty in the Perceiver's Processing Experience? Personality and Social Psychology Review, 8(4), 364-382.
    Schloss, K. B., & Palmer, S. E. (2011). Aesthetic response to color combinations: preference, harmony, and similarity. Attention, Perception, & Psychophysics, 73(2), 551-571.
    Tang, D., Qin, B., & Liu, T. (2015). Deep learning for sentiment analysis: successful approaches and future challenges. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 5(6), 292-303.
    Wang, S., Liu, J., Jiang, J., Jiang, Y., & Lan, J. (2022). Attribute analysis and modeling of color harmony based on multi-color feature extraction in real-life scenes [Original Research]. Frontiers in Psychology, 13.
    Wang, W., Guo, L., & Wu, Y. J. (2022). The merits of a sentiment analysis of antecedent comments for the prediction of online fundraising outcomes. Technological Forecasting and Social Change, 174, 121070.
    Wang, W., Zheng, H., & Wu, Y. J. (2020). Prediction of fundraising outcomes for crowdfunding projects based on deep learning: a multimodel comparative study. Soft Computing, 24(11), 8323-8341.
    Wang, W., Zhu, K., Wang, H., & Wu, Y.-C. J. (2017). The Impact of Sentiment Orientations on Successful Crowdfunding Campaigns through Text Analytics. IET Software, 11(5), 229-238.
    Wong, S.-L., Yu, Y.-P., Ho, N. A.-J., & Paramesran, R. (2014). Comparative analysis of underwater image enhancement methods in different color spaces.
    Xiao, S., Tan, X., Dong, M., & Qi, J. (2014). How to design your project in the online crowdfunding market? Evidence from Kickstarter.
    Zamanian, M., & Heydari, P. (2012). Readability of Texts: State of the Art. Theory & Practice in Language Studies (TPLS), 2(1).
    Zhao, H., Zhang, X., & Li, K. (2017). A sentiment classification model using group characteristics of writing style features. International Journal of Pattern Recognition and Artificial Intelligence, 31(12), 1756016.
    Zhao, L., Lee, S. H., Li, M., & Sun, P. (2022). The Use of Social Media to Promote Sustainable Fashion and Benefit Communications: A Data-Mining Approach. Sustainability, 14(3), 1178.
    黃佩鈺. (2022). 邁向可永續的時尚體系-理論與實務的落差 [Transformation in Sustainable Fashion Business - Gap Between Theory and Practice]. 紡織綜合研究期刊, 32(3), 83-97.

    下載圖示
    QR CODE