研究生: |
邱竣義 Chiu, Chun-Yi |
---|---|
論文名稱: |
不同臀肌熱身方式對於七人制橄欖球員運動表現的效果 Effects of Different Gluteal Muscle Warm-up Strategies for Rugby Seven Players on Sport Performance |
指導教授: |
李恆儒
Lee, Heng-Ju |
口試委員: |
李恆儒
Lee, Heng-Ju 翁明嘉 Weng, Ming-Chia 林建志 Lin, Jian-Zhi |
口試日期: | 2022/06/28 |
學位類別: |
碩士 Master |
系所名稱: |
體育與運動科學系 Department of Physical Education and Sport Sciences |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 中文 |
論文頁數: | 49 |
中文關鍵詞: | 臀大肌 、環狀彈力帶 、下蹲跳 、發力率 |
英文關鍵詞: | gluteus maximus, mini-band, countermovement jump, rate of force development |
研究方法: | 實驗設計法 |
DOI URL: | http://doi.org/10.6345/NTNU202401764 |
論文種類: | 學術論文 |
相關次數: | 點閱:114 下載:5 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
爆發力表現是七人制橄欖球運動員相當重要的能力指標,也是決定了運動場上表現好壞的關鍵。先前研究指出臀部肌群對於爆發力動作有著相當大的貢獻,但各種臀肌熱身運動提升爆發力的效果及機制還存在著不確定性。本研究探討以四種臀肌熱身方式介入後,對於隨後爆發力表現的差異、以及肌肉活化的影響。招募10名大學甲組橄欖球隊員 (年齡:20.30 ± 1.06歲;身高:176.36 ± 3.11公分;體重:81.58 ± 8.43公斤),實驗採隨機交叉設計進行槓鈴臀推、環狀彈力帶、單腳橋式、及休息情境等四種熱身的介入,在介入前、介入後休息0、5、10、15分鐘時,以Kisler測力板收集下蹲跳的動力學參數、測量40公尺衝刺速度、及以Delsys表面肌電儀測量臀大肌與股外側肌的肌電訊號。以One-way ANOVA分析運動表現在各個後測時間點之四種介入方式的差異、及肌電訊號的變化情形,再以LSD法進行事後比較,顯著水準訂為α= .05。槓鈴臀推於介入後15分鐘 (p=.047) 之0-20公尺衝刺速度顯著優於休息及單腳橋式;環狀彈力帶及單腳橋式在介入後0分鐘 (p=.032) 之發力率顯著優於休息,在介入後10分鐘之跳躍高度及最大功率顯著優於休息 (p=.014; p=.036);且環狀彈力帶在介入後10分鐘 (p=.049) 之0-20公尺衝刺速度顯著優於休息及單腳橋式;環狀彈力帶在休息後0、5、10分鐘之臀大肌EMG訊號顯著低於前測 (p=.039)。綜上所述,環狀彈力帶及單腳橋式對於下蹲跳有較佳的效果,而環狀彈力帶及槓鈴臀推對於加速度有較佳的效果,建議可依照球員屬性以及任務的分配,決定最適合的賽前臀肌熱身方式。
Explosive performance is an essential physical ability of Rugby sevens players, which is also a critical factor determining their performance. Previous studies had pointed out that the gluteal muscles considerably contribute to explosive movements. However, the effects and mechanisms of different gluteal muscle exercises as interventional methods to enhance explosive performance are still uncertain. This article investigated the acute impact of four different warm-up methods of gluteal muscles on explosive performance. There were ten rugby sevens players recruited in this study which used crossover designed. The intervention was to provide four different warm-up methods to activate gluteal muscles before physical assessments which was the barbell hip thrust, the mini-band, the single-leg bridge, and the control. Kinetic parameters of CMJ were measured by force plate (Kisler). 40m sprints were also assessed. Isometric muscle strength of gluteus maximus was assessed by Hand-Held Dynamometer (Gerin) before and after the intervention immediately, 5 minutes, 10 minutes, and 15 minutes. One-way ANOVA was used to analyze the differences in each intervention. Post-hoc was applied when the difference was significant. The significance level was defined at α= .05. For the barbell hip thrust, the rate of force development (RFD) after a 5-minute rest was significantly greater compared to the control (p=.041), the jump height at 10 (p=.023) and 15 (p=.012) minutes after rest was significantly greater than that of the bridge exercise intervention, and the isometric muscle strength of the gluteus maximus at 10 minutes after rest was also greater than the control group (p=.001). The sprint speed of 0-20m after a 15-minute rest was significantly better compared with the bridge (p=.015) and control (p=.039); For the mini-band intervention, the sprint speed of 0-20m after a 5-minute rest was significantly better than the control group (p=.026), the sprint speed of 40m after 5 minutes rest was significantly better compared with the control (p=.003) and the bridge (p=.042); the isometric muscle strength of the gluteus maximus was significantly greater after 10-minutes rest for the bridge compared with the control (p=.003). Compared with the other intervention, using the resistance equipment activation method of the barbell hip thrust might be more helpful for the jumping mode. Still, it may cause the accumulation of physical fatigue in a short time, and the gain of the explosive effect will appear later. Although the mini-band intervention did not significantly increase glute strength, however, it significantly increased sprint speed after 5 minutes of rest. The bridge exercise intervention did not show much in gluteal muscle activation. It is suggested that the most suitable pre-match glute activation method can be selected according to competition considerations.
何寶成、蔡忠昌(2007)。熱身運動對於運動表現的影響。大專體育(91),165-173。
曾昱軒、何仁育、鄭景峰(2015)。活化後增能作用對提升爆發力表現之效果。中華體育季刊,29(2),111-118。
黃裕斌、翁梓林(2008年5月31日)。四種力學原理評估人體跳躍高度之差異-以直膝垂直跳為例。國立臺北教育大學體育學術研討會,246-251。
劉曜堂、陳崇豪(2017)。橄欖球員疲勞恢復的生理狀態對比賽影響之探討。長榮運動休閒學刊(11),56-62。
Baker, D. (2001). A series of studies on the training of high-intensity muscle power in rugby league football players. Journal of Strength & Conditioning Research, 15(2), 198-209.
Barry, L., Kenny, I., & Comyns, T. (2016). Performance Effects of Repetition Specific Gluteal Activation Protocols on Acceleration in Male Rugby Union Players. Journal of Human Kinetics, 54, 33-42. https://doi.org/10.1515/hukin-2016-0033
Bartlett, J. L., Sumner, B., Ellis, R. G., & Kram, R. (2014). Activity and functions of the human gluteal muscles in walking, running, sprinting, and climbing. American Journal of Physical Anthropology, 153(1), 124-131. https://doi.org/https://doi.org/10.1002/ajpa.22419
Bishop, D. (2003). Warm Up I. Sports Medicine, 33(6), 439-454. https://doi.org/10.2165/00007256-200333060-00005
Blazevich, A. J., & Babault, N. (2019). Post-activation Potentiation Versus Post-activation Performance Enhancement in Humans: Historical Perspective, Underlying Mechanisms, and Current Issues. Front Physiol, 10, 1359. https://doi.org/10.3389/fphys.2019.01359
Buchheit, M., Samozino, P., Glynn, J. A., Michael, B. S., Al Haddad, H., Mendez-Villanueva, A., & Morin, J. B. (2014). Mechanical determinants of acceleration and maximal sprinting speed in highly trained young soccer players. J Sports Sci, 32(20), 1906-1913. https://doi.org/10.1080/02640414.2014.965191
Cambridge, E. D. J., Sidorkewicz, N., Ikeda, D. M., & McGill, S. M. (2012). Progressive hip rehabilitation: The effects of resistance band placement on gluteal activation during two common exercises. Clinical Biomechanics, 27(7), 719-724. https://doi.org/https://doi.org/10.1016/j.clinbiomech.2012.03.002
Christensen, B., Bond, C. W., Napoli, R., Lopez, K., Miller, J., & Hackney, K. J. (2020). The Effect of Static Stretching, Mini-Band Warm-Ups, Medicine-Ball Warm-Ups, and a Light Jogging Warm-Up on Common Athletic Ability Tests. Int J Exerc Sci, 13(4), 298-311.
Colado, J. C., & Triplett, N. T. (2008). Effects of a short-term resistance program using elastic bands versus weight machines for sedentary middle-aged women. J Strength Cond Res, 22(5), 1441-1448. https://doi.org/10.1519/JSC.0b013e31817ae67a
Collazo García, C. L., Rueda, J., Suárez Luginick, B., & Navarro, E. (2020). Differences in the Electromyographic Activity of Lower-Body Muscles in Hip Thrust Variations. The Journal of Strength & Conditioning Research, 34(9), 2449-2455. https://doi.org/10.1519/jsc.0000000000002859
Comyns, T., Kenny, I., & Scales, G. (2015). Effects of a Low-Load Gluteal Warm-Up on Explosive Jump Performance. J Hum Kinet, 46, 177-187. https://doi.org/10.1515/hukin-2015-0046
Crow, J. F., Buttifant, D., Kearny, S. G., & Hrysomallis, C. (2012). Low Load Exercises Targeting the Gluteal Muscle Group Acutely Enhance Explosive Power Output in Elite Athletes. The Journal of Strength & Conditioning Research, 26(2), 438-442. https://doi.org/10.1519/JSC.0b013e318220dfab
Dello Iacono, A., Padulo, J., & Seitz, L. D. (2018). Loaded hip thrust-based PAP protocol effects on acceleration and sprint performance of handball players. Journal of sports sciences, 36(11), 1269-1276. https://doi.org/10.1080/02640414.2017.1374657
Distefano, L. J., Blackburn, J. T., Marshall, S. W., & Padua, D. A. (2009). Gluteal muscle activation during common therapeutic exercises. J Orthop Sports Phys Ther, 39(7), 532-540. https://doi.org/10.2519/jospt.2009.2796
Dorn, T. W., Schache, A. G., & Pandy, M. G. (2012). Muscular strategy shift in human running: dependence of running speed on hip and ankle muscle performance. Journal of Experimental Biology, 215(11), 1944-1956. https://doi.org/10.1242/jeb.064527
Ekstrom, R. A., Donatelli, R. A., & Carp, K. C. (2007). Electromyographic analysis of core trunk, hip, and thigh muscles during 9 rehabilitation exercises. J Orthop Sports Phys Ther, 37(12), 754-762. https://doi.org/10.2519/jospt.2007.2471
Febbraio, M. A., Carey, M. F., Snow, R. J., Stathis, C. G., & Hargreaves, M. (1996). Influence of elevated muscle temperature on metabolism during intense, dynamic exercise. Am J Physiol, 271(5 Pt 2), R1251-1255. https://doi.org/10.1152/ajpregu.1996.271.5.R1251
Fink, W. J., Costill, D. L., & Van Handel, P. J. (1975). Leg muscle metabolism during exercise in the heat and cold. European Journal of Applied Physiology and Occupational Physiology, 34(1), 183-190. https://doi.org/10.1007/BF00999931
Fisher, B. E., Southam, A. C., Kuo, Y.-L., Lee, Y.-Y., & Powers, C. M. (2016). Evidence of altered corticomotor excitability following targeted activation of gluteus maximus training in healthy individuals. NeuroReport, 27(6), 415-421. https://doi.org/10.1097/wnr.0000000000000556
French, D. N., Kraemer, W. J., & Cooke, C. B. (2003). Changes in dynamic exercise performance following a sequence of preconditioning isometric muscle actions. J Strength Cond Res, 17(4), 678-685. https://doi.org/10.1519/1533-4287(2003)017<0678:cidepf>2.0.co;2
Gabbett, T. J., Jenkins, D. G., & Abernethy, B. (2011). Correlates of Tackling Ability in High-Performance Rugby League Players. The Journal of Strength & Conditioning Research, 25(1), 72-79. https://doi.org/10.1519/JSC.0b013e3181ff506f
Gray, S. R., De Vito, G., Nimmo, M. A., Farina, D., & Ferguson, R. A. (2006). Skeletal muscle ATP turnover and muscle fiber conduction velocity are elevated at higher muscle temperatures during maximal power output development in humans. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 290(2), R376-R382.
Haugen, T., McGhie, D., & Ettema, G. (2019). Sprint running: from fundamental mechanics to practice—a review. European Journal of Applied Physiology, 119(6), 1273-1287. https://doi.org/10.1007/s00421-019-04139-0
Howard, R. M., Conway, R., & Harrison, A. J. (2018). Muscle activity in sprinting: a review. Sports Biomechanics, 17(1), 1-17. https://doi.org/10.1080/14763141.2016.1252790
Issurin, V. B. (2010). New Horizons for the Methodology and Physiology of Training Periodization. Sports Medicine, 40(3), 189-206. https://doi.org/10.2165/11319770-000000000-00000
Johnson, M. A., Polgar, J., Weightman, D., & Appleton, D. (1973). Data on the distribution of fibre types in thirty-six human muscles. An autopsy study. J Neurol Sci, 18(1), 111-129. https://doi.org/10.1016/0022-510x(73)90023-3
Jones, A. M., Koppo, K., & Burnley, M. (2003). Effects of prior exercise on metabolic and gas exchange responses to exercise. Sports Med, 33(13), 949-971. https://doi.org/10.2165/00007256-200333130-00002
Karvonen, J. (1992). Importance of warm-up and cool down on exercise performance. In Medicine in sports training and coaching (Vol. 35, pp. 189-214). Karger Publishers.
Kawasaki, T., Tanabe, Y., Tanaka, H., Murakami, K., Maki, N., Ozaki, H., Hirayama, D., Kunda, M., Nobuhara, K., Okuwaki, T., & Kaneko, K. (2018). Kinematics of Rugby Tackling: A Pilot Study With 3-dimensional Motion Analysis. Am J Sports Med, 46(10), 2514-2520. https://doi.org/10.1177/0363546518781808
Kennedy, D., Casebolt, J. B., Farren, G. L., Fiaud, V., Bartlett, M., & Strong, L. Electromyographic differences of the gluteus maximus, gluteus medius, biceps femoris, and vastus lateralis between the barbell hip thrust and barbell glute bridge. Sports Biomechanics, 1-15. https://doi.org/10.1080/14763141.2022.2074875
Loturco, I., Contreras, B., Kobal, R., Fernandes, V., Moura, N., Siqueira, F., Winckler, C., Suchomel, T., & Pereira, L. A. (2018). Vertically and horizontally directed muscle power exercises: Relationships with top-level sprint performance. PLoS One, 13(7), e0201475. https://doi.org/10.1371/journal.pone.0201475
Lube, J., Cotofana, S., Bechmann, I., Milani, T. L., Özkurtul, O., Sakai, T., Steinke, H., & Hammer, N. (2016). Reference data on muscle volumes of healthy human pelvis and lower extremity muscles: an in vivo magnetic resonance imaging feasibility study. Surgical and Radiologic Anatomy, 38(1), 97-106.
Mackala, K., Stodólka, J., Siemienski, A., & Coh, M. (2013). Biomechanical Analysis of Squat Jump and Countermovement Jump From Varying Starting Positions. The Journal of Strength & Conditioning Research, 27(10), 2650-2661. https://doi.org/10.1519/JSC.0b013e31828909ec
McCutcheon, L. J., Geor, R. J., & Hinchcliff, K. W. (1999). Effects of prior exercise on muscle metabolism during sprint exercise in horses. J Appl Physiol (1985), 87(5), 1914-1922. https://doi.org/10.1152/jappl.1999.87.5.1914
McGowan, C. J., Pyne, D. B., Thompson, K. G., & Rattray, B. (2015). Warm-Up Strategies for Sport and Exercise: Mechanisms and Applications. Sports Med, 45(11), 1523-1546. https://doi.org/10.1007/s40279-015-0376-x
McLellan, C. P., Lovell, D. I., & Gass, G. C. (2011). The Role of Rate of Force Development on Vertical Jump Performance. The Journal of Strength & Conditioning Research, 25(2), 379-385. https://doi.org/10.1519/JSC.0b013e3181be305c
Morishita, S., Tsubaki, A., Nakamura, M., Nashimoto, S., Fu, J. B., & Onishi, H. (2019). Rating of perceived exertion on resistance training in elderly subjects. Expert Review of Cardiovascular Therapy, 17(2), 135-142. https://doi.org/10.1080/14779072.2019.1561278
Morris, C. G., Weber, J. A., & Netto, K. J. (2022). Relationship Between Mechanical Effectiveness in Sprint Running and Force-Velocity Characteristics of a Countermovement Jump in Australian Rules Football Athletes. The Journal of Strength & Conditioning Research, 36(3), e59-e65. https://doi.org/10.1519/jsc.0000000000003583
Nagano, A., Komura, T., Fukashiro, S., & Himeno, R. (2005). Force, work and power output of lower limb muscles during human maximal-effort countermovement jumping. J Electromyogr Kinesiol, 15(4), 367-376. https://doi.org/10.1016/j.jelekin.2004.12.006
Neumann, D. A. (2010). Kinesiology of the hip: a focus on muscular actions. J Orthop Sports Phys Ther, 40(2), 82-94. https://doi.org/10.2519/jospt.2010.3025
Parr, M., Price, P. D., & Cleather, D. J. (2017). Effect of a gluteal activation warm-up on explosive exercise performance. BMJ open sport & exercise medicine, 3(1), e000245. https://doi.org/10.1136/bmjsem-2017-000245
Peeters, A., Carling, C., Piscione, J., & Lacome, M. (2019). In-Match Physical Performance Fluctuations in International Rugby Sevens Competition. Journal of sports science & medicine, 18(3), 419-426. https://pubmed.ncbi.nlm.nih.gov/31427863
Peterson, M. D., Alvar, B. A., & Rhea, M. R. (2006). The contribution of maximal force production to explosive movement among young collegiate athletes. J Strength Cond Res, 20(4), 867-873. https://doi.org/10.1519/r-18695.1
Pinfold, S. C., Harnett, M. C., & Cochrane, D. J. (2018). The acute effect of lower-limb warm-up on muscle performance. Research in Sports Medicine, 26(4), 490-499. https://doi.org/10.1080/15438627.2018.1492390
Piper, A. D., Joubert, D. P., Jones, E. J., & Whitehead, M. T. (2020). Comparison of Post-Activation Potentiating Stimuli on Jump and Sprint Performance. Int J Exerc Sci, 13(4), 539-553.
Ross, A., Gill, N., & Cronin, J. (2014). Match Analysis and Player Characteristics in Rugby Sevens. Sports Medicine, 44(3), 357-367. https://doi.org/10.1007/s40279-013-0123-0
Schoenfeld, B. J., Contreras, B., Willardson, J. M., Fontana, F., & Tiryaki-Sonmez, G. (2014). Muscle activation during low- versus high-load resistance training in well-trained men. European Journal of Applied Physiology, 114(12), 2491-2497. https://doi.org/10.1007/s00421-014-2976-9
Schoenfeld, B. J., Grgic, J., Ogborn, D., & Krieger, J. W. (2017). Strength and Hypertrophy Adaptations Between Low- vs. High-Load Resistance Training: A Systematic Review and Meta-analysis. The Journal of Strength & Conditioning Research, 31(12), 3508-3523. https://doi.org/10.1519/jsc.0000000000002200
Seminati, E., Cazzola, D., Preatoni, E., & Trewartha, G. (2017). Specific tackling situations affect the biomechanical demands experienced by rugby union players. Sports Biomechanics, 16(1), 58-75. https://doi.org/10.1080/14763141.2016.1194453
Stojanović, M. D. M., Mikić, M. J., Milošević, Z., Vuković, J., Jezdimirović, T., & Vučetić, V. (2021). Effects of Chair-Based, Low-Load Elastic Band Resistance Training on Functional Fitness and Metabolic Biomarkers in Older Women. J Sports Sci Med, 20(1), 133-141. https://doi.org/10.52082/jssm.2021.133
Tillin, N. A., & Bishop, D. (2009). Factors Modulating Post-Activation Potentiation and its Effect on Performance of Subsequent Explosive Activities. Sports Medicine, 39(2), 147-166. https://doi.org/10.2165/00007256-200939020-00004
Tottori, N., Suga, T., Miyake, Y., Tsuchikane, R., Tanaka, T., Terada, M., Otsuka, M., Nagano, A., Fujita, S., & Isaka, T. (2021). Trunk and lower limb muscularity in sprinters: what are the specific muscles for superior sprint performance? BMC Res Notes, 14(1), 74. https://doi.org/10.1186/s13104-021-05487-x
van den Tillaar, R., Lerberg, E., & von Heimburg, E. (2019). Comparison of three types of warm-up upon sprint ability in experienced soccer players. Journal of sport and health science, 8(6), 574-578. https://doi.org/10.1016/j.jshs.2016.05.006
Williams, M. J., Gibson, N. V., Sorbie, G. G., Ugbolue, U. C., Brouner, J., & Easton, C. (2021). Activation of the Gluteus Maximus During Performance of the Back Squat, Split Squat, and Barbell Hip Thrust and the Relationship With Maximal Sprinting. The Journal of Strength & Conditioning Research, 35(1), 16-24. https://doi.org/10.1519/jsc.0000000000002651