簡易檢索 / 詳目顯示

研究生: 楊銘峰
論文名稱: 改良磺化三聚氰胺甲醛樹脂之合成與性質分析
指導教授: 許貫中
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 114
中文關鍵詞: 強塑劑分子量流動性表面黏度飽和劑量表面電位
英文關鍵詞: superplasticizer, molecular weight, fluidity, apparent viscosity, saturation dosage, zeta potentia
論文種類: 學術論文
相關次數: 點閱:211下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 強塑劑是製備高性能混凝土的重要組成。本研究利用三聚氰胺、甲
    醛、亞硫酸氫鈉進行加成、磺酸化反應,所得之單體再與氯醋酸鈉進行接羧縮根、縮合及重組反應。改變接羧縮根反應時的pH 值、溫度、時間、及氯醋酸鈉與亞硫酸氫鈉的莫耳比例,得到一系列不同分子量之改良磺化三聚氰胺甲醛樹脂(MSMF),並以FT-IR、1H-NMR、13C-NMR 來鑑定其結構。
    本研究探討MSMF 之重量平均分子量(Mw)與酸根比例對水泥漿體之
    擴散直徑、坍度維持、視黏度、表面電位之影響,並與傳統的SMF 及商用羧酸系HP100、磺酸系HPC1000 進行比較。
    研究結果顯示經過改質MSMF 的水泥漿體流動性優於SMF,可減少坍
    損,酸根比例接近的MSMF,Mw 較大者,所測得水泥漿體流動性與坍度維持較佳,視黏度較小,漿體表面電位有愈大的趨勢。分子量相近的MSMF,隨著羧酸根的比例增加,漿體的流動性逐漸變好。

    Superplasticizer is one important component in making the high
    performance concrete.In the research,melamine、formaldehyde and sodium
    bisulfite proceeded the addition,sulfonation,and the monomers and
    chloracetic acid sodium peoceeded the reaction,polymerization and
    rearrangement reaction.The change of reaction condition i.e., pH
    value, temperature, time and chloracetic acid sodium and sodium
    bisulfite molar ratio made a series of different molecular weight of
    modified sulfonated melamine-formaldehyde resin ( MSMF ) .The
    structures of the synthesized superplasticizer was conformed and
    determined by FT-IR、1H-NMR and 13C-NMR spectra.
    The effects of the molecular weight(Mw)and the acid ratio of
    MSMF can influence the properties of the cement pastes such as the
    initial spread diameter,lower slump loss,apparent viscosity and the
    zeta potential of particles.The properties were compared to the
    commercial superplasticizers,i.e.,SMF,HP100 and HPC1000.
    The results indicated that the cement pastes containing MSMF shows
    better fluidity than SMF.While MSMF with the approximate acid
    ratio,if Mw value is large, the cement pastes show better fluidity ,
    lower slump loss, lower apparent viscosity and larger zeta potential.
    While MSMF with the approximate Mw value,if acid ratio value is large,
    the cement pastes show better fluidity.

    第一章緒論-------------------------------------------- 1 第二章文獻回顧---------------------------------------- 3 2 - 1 水泥- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 3 2-1-1 波特蘭水泥的組成------------------------------------- 3 2-1-2 水泥的水化------------------------------------------- 3 2 - 2 高性能混凝土- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 7 2-2-1 高性能混凝土之定義- - - - - - - - - - - - - - - - - - - - - - - - - - - - 7 2-2-2 高性能混凝土的組成- - - - - - - - - - - - - - - - - - - - - - - - - - - - 8 2 - 3 強塑劑- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1 0 2-3-1 摻料與強塑劑的定義- - - - - - - - - - - - - - - - - - - - - - - - - - - 1 0 2-3-2 強塑劑的功用- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1 1 2-3-3 強塑劑的種類- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1 2 2-3-4 強塑劑之分散機制- - - - - - - - - - - - - - - - - - - - - - - - - - - - 1 6 2 - 4 強塑劑之吸附行為- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2 2 2-4-1 吸附理論- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2 2 2-4-2 Langmuir 等溫吸附曲線- - - - - - - - - - - - - - - - - - - - - - - - 2 2 2-4-3 吸附模式- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2 3 2-4-4 影響吸附之因素- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2 4 2-4-5 強塑劑與水泥漿體之吸附行為- - - - - - - - - - - - - - - - - - - 2 5 2-5 影響水泥漿體流動之因素- - - - - - - - - - - - - - - - - - - - - - - - - - - - 2 6 2-6 相關文獻探討彙整- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2 9 第三章實驗部分------------------------------------ 31 3-1 實驗材料- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 3 1 3-1-1 藥品------------------------------------------------ 31 3-1-2 材料------------------------------------------------ 31 3-2 實驗儀器- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 3 3 3-2-1 強塑劑合成與性質分析- - - - - - - - - - - - - - - - - - - - - - - - - 3 3 3-2-2 應用方面- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 3 4 3-3 實驗流程與方法- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 3 6 3-3-1 實驗流程- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 3 6 3-3-2 強塑劑的合成- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 3 9 3-4 水泥漿物理性質測定- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 4 4 3-4-1 水泥漿拌製- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 4 4 3-4-2 迷你坍度錐平均擴散直徑與坍度維持測定- - - - - - - - - - - - 4 4 3-4-3 水泥漿黏度測試- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 4 4 3-4-4 凝結時間的測試- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 4 4 3-4-5 強塑劑於水泥漿體吸附量之測量- - - - - - - - - - - - - - - - - - - 4 5 3-4-6 水泥砂漿流度試驗------------------------------------ 45 3-4-7 混凝土拌製------------------------------------------ 46 3-4-8 混凝土抗壓強度試驗---------------------------------- 46 第四章測量原理與分析--------------------------------- 47 4-1 固含量測定-------------------------------------------- 47 4-2 產率測定---------------------------------------------- 47 4-3 pH 值測定--------------------------------------------- 47 4-4 凝膠滲透層析分析- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 4 7 4-5 紅外光光譜分析- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 4 8 4-6 紫外光光譜分析- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 4 9 4-7 核磁共振光譜分析- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 4 9 4-8 質譜光譜分析- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 5 0 4-9 元素分析---------------------------------------------- 50 4 - 1 0 表面電位測定- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 5 1 4 - 1 1 MSMF 羧酸根與磺酸根比例之測定- - - - - - - - - - - - - - - - - - 5 1 第五章結果與討論------------------------------------------ 52 5-1 強塑劑的合成分析---------------------------------------- 52 5-2 強塑劑基本性質分析-------------------------------------- 56 5-3 強塑劑化學光譜鑑定-------------------------------------- 63 5-3-1 紅外線光譜分析-------------------------------------- 63 5-3-2 NMR 光譜分析---------------------------------------- 66 5-3-3 紫外線光譜分析-------------------------------------- 69 5-4 強塑劑分子量對水泥漿性質之影響-------------------------- 72 5-4-1 強塑劑分子量對水泥漿體流動性之影響------------------ 73 5-4-2 強塑劑分子量對水泥漿體坍度維持之影響---------------- 74 5-4-3 強塑劑分子量對水泥漿體視黏度之影響------------------ 75 5-4-4 強塑劑分子量對水泥漿體表面電位之影響---------------- 76 5-5 強塑劑酸根比例對水泥漿體性質之影響---------------------- 84 5-5-1 強塑劑酸根比例對水泥漿體流動性之影響---------------- 84 5-5-2 強塑劑酸根比例對水泥漿體坍度維持之影響-------------- 85 5-5-3 強塑劑酸根比例對水泥漿體視黏度之影響---------------- 85 5-5-4 強塑劑酸根比例對水泥漿體表面電位之影響-------------- 86 5-6 MSMF 與商用強塑劑之比較----------------------------- 89 5-6-1 MSMF 與SMF 對水泥漿流動性之比較------------------ 89 5-6-2 水泥漿體的擴散直徑與坍度維持之比較--------------- 91 5-6-3 水泥漿體視黏度之比較--------------------------- 94 5-6-4 水泥漿體凝結時間之比較-------------------------- 95 5-6-5 水泥砂漿流度試驗與維持測試---------------------- 96 5-6-6 強塑劑對混凝土工作性質之影響-------------------- 97 第六章結論與未來方向--------------------------------- 108 6-1 結論--------------------------------------------- 108 6-2 未來方向----------------------------------------- 109 第七章參考資料--------------------------------------- 110 圖目錄 圖2-1-1 水泥水化時間對放熱通量之關係圖----------------------------------------- 4 圖2-2-1 混凝土的基本組成------------------------------------------------------- 9 圖2-3-1 改良的磺化木質素簡化分子結構------------------------------------------ 13 圖2-3-2 磺化萘甲醛聚合物分子結構---------------------------------------------- 13 圖2-3-3 磺化美耐皿甲醛聚合物分子結構------------------------------------------ 14 圖2-3-4 壓克力酸鹽分子結構---------------------------------------------------- 15 圖2-3-5 磺酸化酚甲醛樹酯分子結構---------------------------------------------- 16 圖2-3-6 靜電排斥作用---------------------------------------------------------- 17 圖2-3-7 粒子間的作用力位能與粒子間的距離之關係-------------------------------- 18 圖2-3-8 強塑劑吸附在水泥顆粒表面之電雙層-------------------------------------- 19 圖2-3-9 強塑劑的立體障礙延長其被水化產物包覆的時間---------------------------- 20 圖2-3-10 水披覆層環繞效應----------------------------------------------------- 21 圖2-3-11 輸氣作用------------------------------------------------------------- 21 圖2-4-1 Langmuir 等溫吸附曲線------------------------------------------------- 23 圖2-4-2 高分子聚合物在水泥顆粒表面之吸附模式---------------------------------- 24 圖3-2-1 合成反應裝置示意圖---------------------------------------------------- 35 圖3-2-2 mini-slup cone 示意圖------------------------------------------------- 35 圖3-3-1 實驗流程圖(一) ------------------------------------------------------ 37 圖3-3-2 實驗流程圖(二) ------------------------------------------------------ 38 圖3-3-3 MSMF 反應流程圖----------------------------------------------------- 43 圖5-1-1 加成反應的產物之MASS 圖譜--------------------------------------------- 54 圖5-1-2 磺酸化反應的產物之MASS 圖譜------------------------------------------- 54 圖5-1-3 接羧酸根反應的產物之MASS 圖譜---------------------------------------- 55 圖5-2-1 GPC 標準品之分子量與滯留時間的校正曲線圖------------------------------ 60 圖5-2-2 HPC1000 之分子量分布圖------------------------------------------------ 60 圖5-2-3 HP100 之分子量分布圖-------------------------------------------------- 61 圖5-2-4 MSMF#40 電位滴定曲線與一次微分曲線圖---------------------------------- 61 圖5-2-5 MSMF#48 電位滴定曲線與一次微分曲線圖---------------------------------- 62 圖5-3-1 MSMF 之IR 吸收光譜圖-------------------------------------------------- 64 圖5-3-2 自行合成SMF 之IR 吸收光譜圖------------------------------------------- 64 圖5-3-3 HP100 之IR 吸收光譜--------------------------------------------------- 65 圖5-3-4 HPC1000 之IR 吸收光譜圖----------------------------------------------- 65 圖5-3-5 自行合成SMF 之1H-NMR 光譜圖-------------------------------------------- 67 圖5-3-6 自行合成SMF 之13C-NMR 光譜圖------------------------------------------- 67 圖5-3-7 MSMF 之1H-NMR 光譜圖--------------------------------------------------- 68 圖5-3-8 MSMF 之13C-NMR 光譜圖--------------------------------------------------- 68 圖5-3-9 SMF 的UV 吸收光譜圖--------------------------------------------------- 70 圖5-3-10 MSMF 的UV 吸收光譜圖------------------------------------------------- 70 圖5-3-11 HPC1000 的UV 吸收光譜圖---------------------------------------------- 71 圖5-3-12 HP100 的UV 吸收光譜圖------------------------------------------------ 71 圖5-4-1 酸根比例約為0.3/1(C/S)不同分子量的MSMF 其水泥漿體的流動性測試圖 (W/C=0.35,0min)----------------------------------------------------- 79 圖5-4-2 酸根比例約為0.14/1(C/S)不同分子量的MSMF 其水泥漿體的流動性測試圖 (W/C=0.35,0min)----------------------------------------------------- 79 圖5-4-3 酸根比例約為0.3/1(C/S)不同分子量的MSMF 其水泥漿體的坍度損失率 (W/C=0.35,1hr)------------------------------------------------------ 80 圖5-4-4 酸根比例約為0.3/1(C/S)不同分子量的MSMF 其水泥漿體的坍度損失率 (W/C=0.35,2hr)------------------------------------------------------ 80 圖5-4-5 酸根比例約為0.14/1(C/S)不同分子量的MSMF 其水泥漿體的坍度損失率 (W/C=0.35,1hr)------------------------------------------------------ 81 圖5-4-6 酸根比例約為0.3/1(C/S)不同分子量的MSMF 其水泥漿體的表面黏度圖 (W/C=0.35,0min)----------------------------------------------------- 81 圖5-4-7 酸根比例約為0.14/1(C/S)不同分子量的MSMF 其水泥漿體的表面黏度圖 (W/C=0.35,0min)----------------------------------------------------- 82 圖5-4-8 酸根比例約為0.3/1(C/S)不同分子量的MSMF 其水泥漿體的表面電位圖 (W/C=400,SP/C=1.0%,30min)------------------------------------------ 82 圖5-4-9 酸根比例約為0.14/1(C/S)不同分子量的MSMF 其水泥漿體的表面電位圖(W/C=400,SP/C=1.0%,30min) ---------------------------------------- 83 圖5-4-10 酸根比例約為0.3/1(C/S)不同分子量的MSMF 其水泥漿體的表面電位圖 (W/C=400,SP/C=1.0%,30min)------------------------------------------ 83 圖5-5-1 Mw≒1.0×104不同酸根比例之MSMF 其水泥漿體的流動性測試圖 (W/C=0.35,0min)-- -------------------------------------------------- 87 圖5-5-2 Mw≒1.0×104不同酸根比例之MSMF 其水泥漿體的坍度維持圖(W/C=0.35,1hr)--87 圖5-5-3 Mw≒1.0×104不同酸根比例之MSMF 其水泥漿體的表面黏度圖(W/C=0.35,0min)--88 圖5-5-4 Mw≒1.0×104不同酸根比例之MSMF 其水泥漿體表面電位圖 (W/C=400,SP/C=1.0%,30min) ----------------------------------------- 88 圖5-6-1 SMF 與MSMF 水泥漿體的流動性測試圖(W/C=0.38,0min) ----------------- 100 圖5-6-2 SMF 與MSMF 水泥漿體的流動性測試圖(W/C=0.38,1hr) ------------------ 100 圖5-6-3 自行合成SMF 與文獻商用SMF 水泥漿體坍損率比較圖(W/C=0.35,1hr) ----- 101 圖5-6-4 MSMF#40 兩小時內水泥漿體的流動性測試圖(W/C=0.35)------------------- 101 圖5-6-5 MSMF#48 兩小時內水泥漿體的流動性測試圖(W/C=0.35) ------------------ 102 圖5-6-6 HPC1000 兩小時內水泥漿體的流動性測試圖(W/C=0.35) ------------------ 102 圖5-6-7 HP100 兩小時內水泥漿體的流動性測試圖(W/C=0.35) -------------------- 103 圖5-6-8 添加四種強塑劑之水泥漿體的坍損率圖(W/C=0.35,1hr) ----------------- 103 圖5-6-9 添加四種強塑劑之水泥漿體的坍損率圖(W/C=0.35,2hr) ----------------- 104 圖5-6-10 四種強塑劑在水泥表面的吸附量圖(W/C=0.6,SP/C=0.5%) ----------------- 104 圖5-6-11 強塑劑添加劑量對水泥漿體表面黏度之影響(W/C=0.35,0min) ------------ 105 圖5-6-12 不同轉速下水泥漿體之表面黏度(W/C=0.35,SP/C=0.5%,0min) --------- 105 圖5-6-13 添加四種強塑劑之水泥漿體的凝結時間測試圖---------------------------- 106 圖5-6-14 添加四種強塑劑之水泥砂漿流動性測試圖(0min) ------------------------ 106 圖5-6-15 添加四種強塑劑之水泥砂漿流動性測試圖(1hr) ------------------------- 107 表目錄 表2-1-1 波特蘭水泥熟料之組成-------------------------------------- 3 表2-4-1 物理吸附與化學吸附之比較--------------------------------- 22 表2-6-1 相關文獻彙整--------------------------------------------- 29 表3-1-1 波特蘭第一型水泥化學成分分析表--------------------------- 32 表3-2-1 接羧縮根的反應條件表------------------------------------- 40 表3-4-1 混凝土的配比組成表--------------------------------------- 46 表5-2-1 合成MSMF 接羧縮根反應條件、編號與基本性質分析------------ 57 表5-2-2 MSMF 與SMF 元素分析結果---------------------------------- 58 表5-2-3 利用電位滴定儀與EA 測量MSMF 之聚合比例比較表------------- 59 表5-3-1 強塑劑主要官能基的IR 吸收特定波數比較表------------------ 63 表5-5-1 加入1%強塑劑之水泥漿體的表面電位表(W/C=400,30min) ----- 78 表5-6-1 MSMF 與SMF 一小時坍損值比較表(W/C=0.38,SP/C=0.75%) ----- 98 表5-6-2 各種強塑劑的飽和劑量與擴散直徑表(W/C=0.35) -------------- 98 表5-6-3 各種強塑劑的水泥漿體兩小時內坍損值比較表(W/C=0.35) ------ 98 表5-6-4 各強塑劑於混凝土的坍流度及抗壓強度表-------------------- 99

    1.楊思廉,「工業化學概論」, 高立,台北,pp.44-49,1992.
    2.V. S. Ramachandran, V. M. Nalhhotra, C. Jolicoeur and N. Spiratos,
    “Superplasticizers:Properties and Application in Concrete",CANMET,pp.
    2-6,1998.
    3.P. J. Adnersen and D. M. Roy,“The Effect of Calcium Sulfate Adsorption of
    Superplasticizers on a Cement", Cement Concrete Research,Vol.16,pp.255-259,
    1992.
    4.李釗、郭文田,“強塑劑在高性能混凝土上的應用",高性能混凝土配比實作研討
    會,pp.19-43,1998.
    5.F. Larrard,“A Survey of Recent Research in the French LPC Network on High
    Performance Concrete" Proc,of Symposium in Lillehammer, Norwany,pp.57-67,
    1993.
    6.H. Okamura,“High Performance Concrete" Report Concrete Lab.Dept. of Civil
    Engineering, University of Tokyo,1991.
    7.林正喬,“高性能混凝土使用於橋樑工程設計探討", 高性能混凝土研討會論文輯,
    pp.121-140,1993.
    8.J. Buekett,“International Admixtures Standards", Cement Concrete Reseach,
    Vol.20,pp.137-140,1998.
    9.K. H. Khayat,“Viscosity-Enchancing Admixture for Cement-Based Material-An
    Overiew", Cement and Concrete Composites, Vol.20, pp.171-178,1998.
    10.M. Collepardi,“Admixtures Used to Enchance Placing Characterist- ics of
    Concrete", Cement Concrete Composites,Vol. 20,pp.103-112, 1998.
    11.R. Rixom, “ The Economic Aspects of Admixture Use " , Cement Concrete
    Composites,Vol.20,pp.141-147,1998.
    12.I. Odler,R. Schonfeld and H. Dorr,“On the Combined Effect of Water Soluble
    Lignosulfonates and Carbonate of Action and Structure of the Hydration
    Products", Cement Concrete Research,Vol.8,pp. 525-538,1978.
    13.N. Miyake,T. Ando and E.Sakai,“Superplasticized Concrete Using Refined
    Lignosulfonate and It's Action Mechanism", Cement Concrete Research,Vol.
    15,pp.295-302,1985.
    14.M. R. Rixom,“Proceedings of the Workshop on the use of Chemical Admixtures
    in Concrete", University of new South Wales,pp.153, 1975.
    15.V. S. Ramachandran,V. M. Malhotra,C. Jolicoeur and N. Spiratos,
    “ S u p e r p l a s t i c i z e r s : P r o p e r t i e s a n d A p p l i c a t i o n i n C o n c r e te" ,CANMET,pp.49-50,1998.
    16.M. R. Rixom and N. P.Mailvaganam,“Chemical Admixtures for Concrete",
    London New York,pp.13-14,1986.
    17. R. J.Flatt, ,and Y. F.Houst, , “A simplified view on chemical effects
    perturbing the action of Superplasticizers ", Chem. Concr. Res.,31,pp.
    1169-1176,2001.
    18.Robert J. Hunter, “Foundations of Colloid Scieme", Clarend Press.Oxford,
    pp.885-893.1989.
    19.P. K. Mehta,“ Concrete Structure,Material and Properties " , Prentice-
    Hall, New Jersey,1993.
    20.陳慶宏, “強塑劑於高性能混凝土之效能評估", 國立台灣師範大學化學系碩士論
    文,2000.
    21.黃兆龍, “混凝土材料品質概論", 廣昌,1991.
    22.J .C. Cunningham,B. L. Dury and T. Gregory,“Adsorption Charact- eristics
    of Sulfonated Melamine Formaldehyde Consates by High Performance Size
    Exclusion Chramatography", Cement Concrete, Research,Vol.19,pp. 919-926.
    1989.
    23.王應瓊, “儀器分析", 中央圖書,pp.99-124,1992.
    24.J. Khorami and P. C. Aitcin, “ Physicochemical Characterization of
    Superplasticizers", Ottawa Conference.pp.117-125,1989.
    25.K. C. Hover, “Concrete Mixture Proportioning with Water-reducing Admixture
    to Enchance Durability : A Quantitative Model " , Cement Concrete
    Composites,Vol.20,pp.113-116,1998.
    26.M. Absi-Halabi,S. M. Lahalih and T. Al-Khaled,“Water-Soluble Sulfonated
    Amino-Formaldehyde Resins.I.Melamine Resins, Synth- esis " , J.Appl.
    Polymer Sci.,Vol.33,pp.2975-2984,1987.
    27.K. C. Hsu and Y. F. Lee,“Water-Soluble Sulfonated Phenolic Resins.I.
    Synthesis", J.Appl. Polymer Sci.,Vol.57,pp.1501-1509, 1995.
    28. S.Knaus, and B.Bauer-Heim, , “Synthesis and properties of anionic
    cellulose ethers: influence of functional groups and molecular weight on
    flowability of concrete", Carbohydrate Polymers, Vol.53, pp.383 - 394,
    2003.
    29.P. J. Andersen,D. M. Roy and J. M. Gaidis,“The Effect of Super- plasticizer
    Molecular Weight on its Adsorption on and dispersion of, Cement", Cement
    Concrete Research, Vol. 18, pp. 980 -986, 1988.
    30.P. C. Aitcin and Miao, “ Cement and SuperplasticizerCompatibility " ,Proceeding of the 2nd Seminar on High- Performance Concrete,Taipei,Taiwan,
    ROC,71,1990.
    31.陳秀娘,“石油工業廢觸媒的波索蘭活性評估與改質磺化酚醛樹脂之合成", 國立
    台灣師範大學化學系碩士論文,2002.
    32.寕永成,“有機化合物結構鑑定與有機波譜學", 歐亞,pp.393-425,1992.
    33.D. L. Pavia,G. M. Lampman and G. S. Kriz,“Introduction to Spectroscopy",
    Saunders College,FL.USA,1996.
    34.江舜元,“化學摻料基本性質的分析及對水泥水化作用之影響", 國立台灣師範大
    學化學系碩士論文,1996.
    35.G. Chiocchio and A. E. Paolini,“Optimum Time for Adding Superplasticizers
    to Portland Cement Pastes", Cement Concrete
    Research,Vol.16,pp.255-259,1992.
    36.R. Gettu,A. Aguado,L. Agullo,B. Toralles-Carbonari and J.Roncero,
    “Characterization of Cement Pastes with Silica Fume and Superplasticizers
    as Components of High-Performance Concrete", Superplasticizers and Other
    Chemical Admixture in Concrete,Proceedings Fifth CANMENT/ACIInternation
    Conference, Rome,pp.331-343,1997.
    37.M. Shcnaka,K. Kiyagawa,H. Satoch,T. Lzumi and T. Mizunuma, “ Super-
    plasticizers and Mechanical Properties of a Vary High Performance
    Concrete " , Fifth CANMENT/ACI International Conference on Super-
    plasticizers and Other Chemical Admixture in Concrete,Rome, pp.1-12,1997.
    38. K.Yamada, S.Ogawa,and S.Hanehara, “Controlling of the Adsorption and
    Dispersing Force of Polycarboxylated-Type Superplasticizer by Sulfated Ion
    Concentration in Aqueous Phase", Cem.Concr.Res.,Vol 31, pp.375-383,2001.
    39.李麗偵,“化學摻料分子在水泥表面吸附之行為分子動力模擬研究", 國立台灣師
    範大學化學系碩士論文,1998.
    40.R. Schonfeld and H. Dorr, “ On The Combined Effect of Water Soluble
    Lignosulfonates and Carbonates on Portland Cement and Clinker Pastes,Mode
    of Action and Structure of Hydration Products " , Cement Concrete
    Research,Vol.18,pp.525-538,1978.
    41.沈得縣,黃兆龍,“高爐熟料與飛灰之波索蘭反應機理及對水泥漿體巨微觀性質影
    響之研究", 國立台灣工業技術學院博士論文,1991.
    42.G. G. Lim,S. S. Hong,D. S. Kim,B. J. lee and J. S. Rho,“Slump Loss Control
    of Cement Paste by Adding Polycarboxylic Type Slump- Releasing
    Dispersant", Cem.Concr.Res.,Vol.29,pp.223-229,1999.
    43.M. Moukwa,D. Youn and M. Hassanali,“Effect of Degree of Polymerization of Water Soluble Polymer on Concrete Properties", Cement Concrete Research,
    Vol.23,pp.122-130,1993.
    44.林德波,徐治平,“高分子誘發之膠體凝聚現象", 微觀化學工程專刊,第42 卷,第
    2 期,pp.49-65,1995.
    45.黃兆龍,彭添富和林立國,“稻穀灰燃燒溫度對波索蘭反應性質之影響", 中國土木
    水利工程學刊, 第2 卷,第3 期,pp.263-272,1990.
    46.J. Jambor,“Influence of Water-Cement Ratio on the Structure and Strength
    of Hardened Cement Paste", Proceedings of a Conference Held at University
    Sheffield,pp.175-189,1976.
    47.M. Yousuf A. Mollah,P. Palta,T. R. Hess,P. K. Vempati and D. L. Cocke,
    “ Chemical and Physical Effects of Sodium Lignosulfonate Superplaston the
    Hydration of Portland Cement and Solidification /Stabilization
    Consequence", Cem.Concr.Res.,Vol.25,pp.671-682, 1995.
    48.Y.Nakajima, and K.Yamada, “The effect of the kind of calcium sulfate in
    cements on the dispersing ability of poly β - naphthalene sulfonate
    condensate superplasticizer," Cem. Concr. Res., 34, 839-844, 2004.
    49.K. Yamada,T. Takahashi,S. Hanehara and M. Matsuhisa, “ Effects of the
    Chemical Structure on the Properties of Polycarboxylate Type
    Superplasticizer", Cem.Concr.,30,pp.197-203,2000.
    50.趙承琛,「界面科學基礎」,復文,1993.
    51.R. L. Rarick,J. J. Bhautty and H. M. Jennings,“Surface Area Measture- ment
    Using Gas Sorption : Application to Cement Paste", Materials Science of
    Concrete,1-39,E & FN Spon,N.Y.,USA,1995.
    52.I. D. Morrison and S. Ross,“Colloidal Dispersions-Suspensions, Emulsions
    and Foams" , New York : Wiley-Interscience,2002.,
    53.J. A.Lewis, H.Matsuyama, G.Kirby,S.Morissette,and J. F.Young
    “ Polyelectrolyte Effects on the Rheological Properties of Concentrated
    Cement Suspensions",J. Am. Ceram. Soc.,Vol.83, [8],pp.1905-1913,2000
    54.郭義浩,“強塑劑對混凝土直流之影響", 國立中興大學土木工程研究所碩士論
    文,2001.
    55.H.Uchikawa, S.Hanehara and D.Sawaki, “The Role of Steric Repulsive Forces
    in Paste Prepared with Organic Admixture", Cement and Concrete Research,
    27, 37-50, 1997.
    56.V. A.Hackley, “Colloidal Processing of Silicon Nitride with Poly(acrylic
    acid) : I,Adsorption and Electrostatic Interactions", J. Am. Ceram. Soc.,
    Vol 80,[9],pp.2351-2325,1997.
    57.K.Yoshioka, E.Sakai and M.Daimon, “Role of Steric Hindrance in the
    Performance of Superplasticizer for Concrete",J. Am. Ceram. Soc.Vol.80
    [10]pp.2667-2671,1997.
    58.胡建華,汪長春,楊武利,府壽寬,陳博學,成克錦, “聚羧酸系高效減水劑的合
    成與分散機理研究", 復旦學報, Vol 39, [4],pp. 463 -466, 2000.
    59.K. C.Hsu, J. J. Chiu, S. D. Chen and Y. C. Tseng, “Effect of addition time
    of a Superplasticizer on Cement Adsorption and on Concrete Workability",
    Cement and Concrete Composites, Vol 21, pp.425-430, 1999.
    60.S.Hanehara and K.Yamada, “Interaction Between Cement and Chemical
    Admixture from the Point of Cement Hydration, Absorption Behavior of
    Admixture, and Paste Rheology", Cement and Concrete Research, Vol 29,
    pp.1159-1165, 1999.
    61.K.Yoshioka, E.Tazawa, K.Kawai and T.Enohata, “Adsorption Charact- eristics
    of Superplasticizers on Cement Component Minerals", Cement and Concrete
    Research, Vol 32, pp.1507-1513, 2002.
    62.S.Chandra and J. Björnström, “Influence of Cement and Superplast- icizer
    Type and Dosage on the Fluidity of Cement Mortars--Part I", Cement and
    Concrete Research, Vol 32, pp.1605-1611, 2002.
    63.C. M.Neubauer, M.Yang and H. M.Jennings, “Interparticle Pote- ntial and
    Sedimentation Behavior of Cement Suspensions : Effects of Admixture",
    Adv.Cem.Based Mater., Vol 8,pp.17-27,1998.
    64.王軍民、薛芳渝和劉雲編:物理化學。北京:清華大學出版社,1994。
    65. K. J.Laidler, and J. H.Meiser, Physical chemistry, 2nd ed.; Boston :
    Houghton Mifflin, 1995.
    66.蔡雨萍,“新型具側鏈羧酸系強塑劑的合成與對水泥漿流動的影響", 國立台灣師
    範大學化學系碩士論文,2004
    67.黃甄玲“羧酸系分散劑的合成以及對水泥漿體性質的影響", 國立台灣師範大學
    化學系碩士論文,2004
    68.P. J. Adnersen and D. M. Roy,“The Effect of Adsorption of Superplasticizers
    on the Surface of Cement", Cement Concrete Research,Vol 17,pp.805-813,
    1987.
    69.S.Chandra and P.Flodin , “Interactions of polymers and organic admixtures
    on Portland cement hydration," Cem. Concr. Res., 17, pp. 875-890, 1987.

    QR CODE