簡易檢索 / 詳目顯示

研究生: 汪芝翎
Chih-Ling Wang
論文名稱: 初探牛樟芝萃取物的抗肥胖效用
Preliminary study of anti-obesity potential of Antrodia cinnamomea
指導教授: 蔡帛蓉
Tsai, Po-Jung
學位類別: 碩士
Master
系所名稱: 人類發展與家庭學系
Department of Human Development and Family Studies
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 128
中文關鍵詞: 牛樟芝(Antrodia cinnamomea)3T3-L1脂質生成作用(adipogensis)高脂飲食抗肥胖
英文關鍵詞: Antrodia cinnamomea, 3T3-L1, adipogenesis, high-fat diet, anti-obesity
論文種類: 學術論文
相關次數: 點閱:186下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 肥胖(obesity)為一種熱量攝取不平衡所致的慢性代謝疾病,導致肥胖的原因有很多,像是基因、代謝、飲食、體能活動、社會文化環境等因素。肥胖對身體健康具有嚴重的危害,如增加心血管疾病、睡眠窒息症、糖尿病、癌症等發生的風險,因此開發安全且具協助體重控制效用之天然物質成為重要的議題。
    牛樟芝( Antrodia cinnamomea)在傳統治療上常被用於治療食物及藥物中毒、腹瀉、腹痛、高血壓及肝癌,然而目前仍不清楚牛樟芝改善肥胖發生的潛力,因此本研究以皿培式牛樟芝為實驗材料,欲探討牛樟芝的抗肥胖(anti-adipogenic及anti-obesity)功效。
    研究材料使用牛樟芝子實體粉末,經蒸餾水或酒精萃取,於成分分析中,牛樟芝乙醇萃物至少包含十種三萜類,包括antcin K、4,7-dimethoxy-5-methyl-1,3-benzodioxole、antcin C、zhankuic acid C,、dehydrosulphurenic acid、zhankuic acid A、zhankuic acid B、15-α-acetyl-dehydrosulphurenic acid、dehydroeburicoic acid及eburicoic acid。牛樟芝水萃物的部分,多醣萃物組成中主要以分子量小於14 kDa的醣類為主;單醣成分以galactose含量最多,其次為fucose。
    細胞實驗中以3T3-L1分析不同分化期給予牛樟芝乙醇(ACE)或水萃物(ACW)下,對脂肪細胞脂質堆積的影響,結果發現乙醇和水萃物均有降低脂質堆積的效用。其中牛樟芝水萃暨其區分物(牛樟芝多醣類萃物(PS)及牛樟芝非多醣類萃物(NPS))具顯著anti-adipogenic 效用。於anti-adipogenic功效上,研究發現ACW及NPS可藉由抑制分化期初期mitotic clonal expansion,進而降低adipogenesis過程中脂肪細胞分化相關指標C/EBPβ、C/EBPα、PPARγ、FAS及aP2 mRNA表現¬;PS則可藉由降低DMI誘發分化初期ERK蛋白質磷酸化的表現,影響後續PPARγ及aP2 mRNA表現,最終降低脂肪細胞油滴的生成。
    進而以動物實驗探討ACW抗肥胖效用,使用5週齡大C57BL/6J公鼠給予高脂飲食(HFD)誘發肥胖之實驗模式,評估同時投與高熱量飼料與牛樟芝水萃物飼養12週後對小鼠的影響。目前的實驗結果顯示給予HFD飲食顯著增加小鼠體重及出現體內代謝的異常,再給予ACW伴隨HFD飲食下,顯著降低小鼠血清中胰島素(insulin)、瘦體素(leptin)與HMOA-IR指數,並改善高脂飲食所致的肝損傷(降低AST指數及肝臟中TG和TC濃度),也發現ACW的給予經由減緩高脂飲食所致的腹部體脂(腎週脂肪、腸系膜脂肪)堆積,顯著降低小鼠體重增加幅度。
    總和以上結果,牛樟芝水萃暨其區分物在細胞實驗中具有anti-adipogenic效用,於動物實驗中也具有減緩高脂飲食誘發肥胖發生的潛力。我們的實驗結果顯示牛樟芝萃物在未來可應用於協助體重控制。

    Obesity is a chronic metabolic disease resulting from an imbalance between energy intake and energy output. It is caused by the interaction of multiple genetic and environmental factors. Health hazards associated with obesity are serious and include heart disease, sleep apnea, diabetes, and cancer. Thus, the development of agents that may offer safer and more effective alternatives for weight management is needed.
    Antrodia cinnamomea, known as “niu-chang-chih”, has been traditionally used for the treatment of food and drug intoxication, diarrhea, abdominal pain, hypertension, and liver cancer. However, little is known about anti-obesity potential of A. cinnamomea. In this study, we evaluate the anti-adipogenic and anti-obesity activities of extracts of A. cinnamomea cultured on artificial agar plates.
    The aqueous and ethanolic extracts were prepared form dried fruiting bodies of A. cinnamomea. There are 10 triterpenoids found in ethanolic extracts of A. cinnamomea, including antcin K, 4,7-dimethoxy-5-methyl-1,3-benzodioxole, antcin C, zhankuic acid C, dehydrosulphurenic acid, zhankuic acid A, zhankuic acid B, 15-α-acetyl-dehydrosulphurenic acid, dehydroeburicoic acid, and eburicoic acid. The results showed that a low molecular weight polysaccharide (less than 14kDa) was predominantly present in the polysaccharide fractions of A. camphorata. In addition, galactose and fucose were major neutral sugars in polysaccharide fractions of A. cinnamomea.
    We investigated effects of ethanolic (ACE) and aqueous extract (ACW) of A. cinnamomea on adipogenesis of murine 3T3-L1 cells at different differentiation stages. Our results showed that both extracts inhibited lipid deposits. ACW, polysaccharides (PS) and non-polysaccharides fractios (NPS) of ACW exhibited significant anti-adipogenic effect. The anti-adipogenic function of ACW is through inhibition of mitotic clonal expansion in the early phase of adipogenesis. During adipocyte differentiation period, ACW and NPS significantly decreased key adipocyte differentiation-associated markers, PPARγ, C/EBPβ, C/EBPα, FAS, and aP2 expression. PS suppressed DMI-induced ERK phosphoylation and mRNA expressions of PPARγ and aP2.
    ACW was assayed for alleviative effects on obesity. An obesity animal model was established in 5-wk-old C57BL/6J male mice fed with high-fat diet (HFD) for 12 weeks. The HFD mice exhibited significant body weight gain and impaired glucose metabolism. Mice with ACW co-administration (HFD+ACW group) showed significantly lower serum insulin, leptin and HOMA-IR value and ameliorated liver damage (AST values and hepatic cholesterol and triglyceride levels). HF+ACW group had significantly lower body weight gain due to decrease HFD-induced visceral fat accumulation (perirenal adipose tissue, and mesenteric adipose tissue).
    In conclusion, A. cinnamomea aqueous extract and its fractions had anti-adipogenic effect in vitro. Furthermore, A. cinnamomea aqueous extract showed the anti-obesity potential in vivo. Our results suggested that A. cinnamomea extract may be applied to body weight control in future.

    第一章 緒論.................................................1 一、研究動機與目的......................................... ..1 第二章 文獻探討..............................................2 第一節 肥胖與脂肪細胞生成......................................2 第二節 肥胖機轉及相關因子......................................5 一、 Adipogenesis..........................................8 1.p-ERK....................................................9 2.PPARγ...................................................10 3.C/EBP family............................................11 二、Lipogenesis...........................................12 第三節 高脂飲食誘發小鼠肥胖模式................................14 第四節 牛樟芝的生理活性.......................................15 一、牛樟芝簡介..............................................15 二、牛樟芝成分..............................................15 三、牛樟芝萃物的生物活性......................................17 四、牛樟芝安全性.............................................19 第三章 材料方法.............................................20 第一節、皿培式牛樟芝培養與成份分析..............................20 壹、皿培式牛樟芝培養方法......................................20 一、固態培養基配置...........................................20 二、牛樟芝菌株培養...........................................20 貳、 樣品製備...............................................21 一、製備流程: 牛樟芝萃取物和其區分物............................21 二、牛樟芝(Antrodia cinnamomea)水萃粗萃物製備.................21 三、牛樟芝水萃物sub-fractions製備............................22 四、牛樟芝(Antrodia cinnamomea) 乙醇萃物製備..................22 參、 成分分析...............................................22 一、HPLC分析牛樟芝乙醇萃物三萜類含量............................22 二、SEC分析牛樟芝多醣體分子量分布..............................24 三、HPAEC分析牛樟芝多醣類(PS)中單醣組成分......................24 第二節、細胞實驗(IN VITRO STUDY)............................26 壹、實驗架構................................................26 貳、 細胞培養...............................................26 一、3T3-L1前脂肪細胞........................................26 二、細胞解凍及活化...........................................27 三、細胞繼代................................................27 四、 細胞冷凍保存............................................27 五、細胞計數................................................27 六、3T3-L1 分化處理.........................................28 參、 細胞實驗方法............................................28 一、 細胞存活率分析(MTT assay)...........................28 二、 3T3-L1脂質堆積實驗模式建立...........................29 三、油滴染色實驗 (Oil red O staining )...................29 四、3T3-L1脂質堆積實驗...................................29 五、模式建立: 3T3-L1細胞加入分化劑後p-ERK表現之time course study....................................................30 六、牛樟芝水萃暨其區分物對p-ERK表現之影響.......................30 七、牛樟芝水萃物對3T3-L1分化初期mitotic clonal expansion的影響..34 八、牛樟芝水萃物影響脂質生成(adipogenesis)相關基因mRNA之表現.....34 肆、 研究材料...............................................37 一、藥品與試劑..............................................37 (一) 細胞培養..............................................37 (二) 細胞存活率測定..........................................37 (三) 脂質堆積實驗...........................................38 (四) 西方墨點法(Western-blot)...............................38 (五) 定量聚合酶連鎖反應(Quantitative-Polymerase Chain Reaction,Q-PCR)..........................................39 (六) 化學純品..............................................40 二、儀器設備及耗材...........................................40 (一) 儀器設備..............................................40 (二) 拋棄式無菌耗材..........................................41 伍、 統計分析...............................................41 第三節 動物實驗(IN VIVO STUDY)..............................42 壹、實驗一:預實驗............................................42 一、 模式建立:預實驗架構......................................42 二、實驗動物飼養.............................................42 三、飼料...................................................43 (一)牛樟芝凍乾粉末...........................................43 (二)動物飼料配製............................................43 (三)動物犧牲與樣品收集.......................................44 (四)血脂分析...............................................45 (五)肝臟脂質萃取與分析.......................................46 (六)組織切片染色............................................47 (七) 肝臟與脂肪組織mRNA萃取分析...............................48 貳、實驗二.................................................50 一、 模式建立:實驗架構.......................................50 二、實驗動物飼養............................................50 三、飼料...................................................51 (一)牛樟芝凍乾粉末...........................................51 (二)動物飼料組成與配製.......................................51 四、動物犧牲與樣品收集........................................52 五、血清及血脂分析...........................................52 (一)血清葡萄糖(gluscose)分析.................................52 (二)血清膽固醇(total cholesterol)分析........................52 (三)血清三酸甘油酯(triglyceride)分析.........................53 (四)血清游離脂肪酸(NEFA)分析.................................53 (五)胰島素(insulin)分析.....................................53 (六)Adiponectin分析........................................54 (七)Leptin分析.............................................54 (八) Aspartate aminotransferase(AST)分析...................55 (九) Alanine aminotransferase(ALT)分析.....................56 參、統計分析................................................57 第四章 結果................................................58 第一節 皿培式牛樟芝成分分析...................................58 壹、牛樟芝乙醇萃物成分分析....................................58 貳、 牛樟芝水萃物組成分析.....................................61 一、牛樟芝水萃物萃取率........................................61 二、多醣體組成分析...........................................61 三、 牛樟芝多醣粗萃物之單醣組成分析.............................63 第二節 細胞實驗結果..........................................64 壹、牛樟芝萃物對細胞存活率的影響................................64 貳、牛樟芝萃物抑制脂質堆積能力評估..............................66 一、模式建立:不同分化期給予牛樟芝萃物影響脂質堆積之功效.............66 二、牛樟芝水萃及其區分物抑制脂質堆積功效評估......................69 參、牛樟芝萃物對分化初期p-ERK表現的影響.........................72 一、模式建立: 3T3-L1細胞p-ERK表現之Time course study..........72 二、牛樟芝水萃暨其區分物對p-ERK表現之影響.......................73 肆、牛樟芝水萃物對3T3-L1分化初期mitotic clonal expansion的影響..74 伍、牛樟芝水萃暨其區分物對3T3-L1細胞基因表現之影響................76 第三節、動物實驗.............................................78 壹、實驗一:預實驗結果........................................78 一、牛樟芝對小鼠體重變化、攝食量及攝食效率的影響..................78 二、牛樟芝對小鼠組織絕對重量、相對重量的影響......................80 三、小鼠副睪脂肪組織切片與H&E染色..............................82 四、牛樟芝對小鼠血清三酸甘油酯及膽固醇含量影響....................83 五、牛樟芝對小鼠肝臟三酸甘油酯含量影響...........................83 六、牛樟芝對小鼠肝臟及脂肪組織內adipogenic gene表現的影響........84 (一)分析肝臟組織中adipogenic gene表現量.......................84 (二)分析副睪脂肪組織中adipogenic gene表現量...................85 貳、實驗二結果..............................................86 一、牛樟芝對小鼠體重變化及生長情形..............................86 二、攝食量、攝食效率及能量效率.................................86 三、牛樟芝小鼠組織絕對重量及相對重量的影響.......................89 四、脂肪組織切片分析.........................................93 五、血清生化數值含量測定......................................94 1.血清葡萄糖濃度分析.........................................95 2.血清胰島素含量測定.........................................95 3.牛樟芝對胰島素抗性的影響....................................96 4.血清三酸甘油酯及膽固醇含量測定...............................97 5.血清游離脂肪酸含量測定.....................................97 6.血清leptin濃度測定........................................98 7.血清adiponectin濃度測定...................................98 8.血清ALT、AST濃度分析......................................99 六、肝脂分析與組織切片.......................................100 第五章 討論與結論...........................................102 第一節、討論...............................................102 壹、牛樟芝成分分析..........................................102 貳、牛樟芝於細胞實驗中ANTI-ADIPOGENIC 效用...................103 參、牛樟芝水萃物對高脂飲食誘發C57BL/6J肥胖的影響................106 1.小鼠攝食情形、攝食效率及能量效率.............................107 2.小鼠體重變化.............................................108 3.牛樟芝的抗肥胖效用........................................108 4.牛樟芝對高脂飲食誘發代謝異常的影響...........................109 (1)Insulin & glucose level...............................109 (2)Triglyceride, totoal cholesterol & no-ester fatty acid level....................................................110 (3)Leptin & adiponectin concentrations...................111 5.肝功能指標與脂肪肝........................................112 肆、綜合討論與未來改善方向...................................113 第二節、結論...............................................116 第六章 參考文獻............................................118 附錄.....................................................127

    王升陽。(2011)。你所不知道的-牛樟芝(頁40~61)。新北市:蘋果屋,檸檬樹。
    吳銘芳,黃幸妮,吳龍源,周建聖,葉明陽,呂旭峰。(2012)。以牛樟芝餵食小鼠亞急性與亞慢性毒性試驗。傳統醫學雜誌,23(1),11-22。
    洪綉茹。(2005)。3T3-L1脂肪細胞培養及分化平台建立及其應用於活性藻類的篩選。國立中央大學碩士論文。
    胡恆龍,張慶。(1993)。肥胖與營養(頁108~110)。台北市:書泉。
    陳筠婷。(2013)。牛樟芝菌絲體於三種固醇類squalene、cholesterol及stigmasterol處理下之成分與抗發炎研究。國立台灣大學碩士論文。
    謝榮鴻,葉秋莉,陳妙齡,林翠品,劉承慈,邱晴薰,洪永瀚,邱雅鈴。(2013)。營養與免疫(頁11-19~11-20)。台中市:華格那。
    Afridi, A. k., & Khan, A. (2004). Prevalence and Etiology of Obesity - An Overview. Pakistan Journal of Nutrition, 3(1), 14-25.
    Ao, Z. H., Xu, Z. H., Lu, Z. M., Xu, H. Y., Zhang, X. M., & Dou, W. F. (2009). Niuchangchih (Antrodia camphorata) and its potential in treating liver diseases. J Ethnopharmacol, 121(2), 194-212. doi: 10.1016/j.jep.2008.10.039
    Aronne, L. J. (2002). Classification of obesity and assessment of obesity-related health risks. Obes Res, 10 Suppl 2, 105s-115s. doi: 10.1038/oby.2002.203
    Camp, H. S., & Tafuri, S. R. (1997). Regulation of peroxisome proliferator-activated receptor gamma activity by mitogen-activated protein kinase. J Biol Chem, 272(16), 10811-10816.
    Cederberg, A., & Enerback, S. (2003). Insulin resistance and type 2 diabetes--an adipocentric view. Curr Mol Med, 3(2), 107-125.
    Chang, C. Y., Cheng, T. J., Chang, F. R., Wang, H. Y., Kan, W. C., Li, S. L.,et al. (2011). Macrophage mediated anti-proliferation effects of Anthodia camphorata non-polysaccharide based extracts on human hepatoma cells. Biosci Biotechnol Biochem, 75(4), 624-632.
    Chang, C. Y., Huang, Z. N., Yu, H. H., Chang, L. H., Li, S. L., Chen, Y. P.,et al. (2008). The adjuvant effects of Antrodia Camphorata extracts combined with anti-tumor agents on multidrug resistant human hepatoma cells. J Ethnopharmacol, 118(3), 387-395. doi: 10.1016/j.jep.2008.05.001
    Chang, T. T., & Chou, W. N. (1995). Antrodia cinnamomea sp. nov. on Cinnamomum kanehirai in Taiwan. Mycological Research, 99(6), 756-758.
    Chang, T. T., & Wang, W. R. (2005). Basidiomatal formation of Antrodia cinnamomea on artificial agar media. Botanical Bulletin of Academia Sinica, 46(2), 151-154.
    Chang, T. T., & Wang, W. R. (2008). The role of four essential oils on mycelial growth and basidiomatal formation of Antrodia cinnamomea. Taiwan Journal of Forest Science, 23, 105-110.
    Chen, C. H., Yang, S. W., & Shen, Y. C. (1995a). New Steroid acids from Antrodia Cinnamome. J Nat Prod, 58(11), 1655-1661.
    Chen, C. H., Yang, S. W., & Shen, Y. C. (1995b). New Steroid Acids from Antrodia cinnamomea, a Fungal Parasite of Cinnamomum micranthum. J. Nat. Prod., 58(11), 1655–1661.
    Chen, J. J., Lin, W. J., Liao, C. H., & Shieh, P. C. (2007). Anti-inflammatory Benzenoids from Antrodia camphorata. J. Nat. Prod., 70, 989-992.
    Chen, J., & Raymond, K. (2008). Beta-glucans in the treatment of diabetes and associated cardiovascular risks. Vascular Health and Risk Management, 4(6), 1265–1272.
    Chen, S. C., Lu, M. K., Cheng, J. J., & Wang, D. L. (2005). Antiangiogenic activities of polysaccharides isolated from medicinal fungi. FEMS Microbiol Lett, 249(2), 247-254. doi: 10.1016/j.femsle.2005.06.033
    Chen, T. I., Chen, C. C., Lin, T. W., Tsai, Y. T., & Nam, M. K. (2011). A 90-day subchronic toxicological assessment of Antrodia cinnamomea in Sprague-Dawley rats. Food Chem Toxicol, 49(2), 429-433. doi: 10.1016/j.fct.2010.11.018
    Chen, Y. J., Cheng, P. C., Lin, C. N., Liao, H. F., Y.Y., C., Chen, C. C., & Lee, K. M. (2008). Polysaccharides from Antrodia camphorata mycelia extracts possess immunomodulatory activity and inhibits infection of Schistosoma mansoni. Int Immunopharmacol, 8(3), 458-467. doi: 10.1016/j.intimp.2007.11.008
    Cherng, I. H., Chiang, H. C., Cheng, M. C., & Wang, Y. (1995). Three new triterpenoids from Antrodia cinnamomea. J Nat Prod, 58(3), 365-371.
    Cherng, I. H., Wu, D. P., & Chiang, H. C. (1996). Triterpenoids from Antrodia cinnamomea. Phytochemistry, 41(1), 263–267.
    Chitturi, S., Abeygunasekera, S., Farrell, G. C., Holmes-Walker, J., Hui, J. M., Fung, C.,et al. (2002). NASH and insulin resistance: Insulin hypersecretion and specific association with the insulin resistance syndrome. Hepatology, 35(2), 373-379. doi: 10.1053/jhep.2002.30692
    Chou, M.-C., Chang, R., Hung, Y.-H., Chen, Y.-C., & Chiu, C.-H. (2013). Antrodia camphorata ameliorates high-fat-diet induced hepatic steatosis via improving lipid metabolism and antioxidative status. Journal of Functional Foods, 5(3), 1317-1325. doi: 10.1016/j.jff.2013.04.019
    Collins, S., Martin, T. L., Surwit, R. S., & Robidoux, J. (2004). Genetic vulnerability to diet-induced obesity in the C57BL/6J mouse: physiological and molecular characteristics. Physiol Behav, 81(2), 243-248. doi: 10.1016/j.physbeh.2004.02.006
    Dieudonne, M. N., Machinal-Quelin, F., Serazin-Leroy, V., Leneveu, M. C., Pecquery, R., & Giudicelli, Y. (2002). Leptin mediates a proliferative response in human MCF7 breast cancer cells. Biochem Biophys Res Commun, 293(1), 622-628. doi: 10.1016/s0006-291x(02)00205-x
    Dreyer, C., Krey, G., Keller, H., Givel, F., Helftenbein, G., & Wahli, W. (1992). Control of the peroxisomal beta-oxidation pathway by a novel family of nuclear hormone receptors. Cell, 68(5), 879-887.
    Fantuzzi, G. (2005). Adipose tissue, adipokines, and inflammation. J Allergy Clin Immunol, 115(5), 911-919; quiz 920. doi: 10.1016/j.jaci.2005.02.023
    Feng, D., Tang, Y., Kwon, H., Zong, H., Hawkins, M., Kitsis, R. N., & Pessin, J. E. (2011). High-fat diet-induced adipocyte cell death occurs through a cyclophilin D intrinsic signaling pathway independent of adipose tissue inflammation. Diabetes, 60(8), 2134-2143. doi: 10.2337/db10-1411
    Font de Mora, J., Porras, A., Ahn, N., & Santos, E. (1997). Mitogen-activated protein kinase activation is not necessary for, but antagonizes, 3T3-L1 adipocytic differentiation. Mol Cell Biol, 17(10), 6068-6075.
    Gajda, A. M., Pellizzon, M. A., Ricci, M. R., & Ulman, E. A. (2007). Diet-induced metabolic syndrome in rodent models. animalLABNEWS.
    Geethangili, M., & Tzeng, Y. M. (2011). Review of Pharmacological Effects of Antrodia camphorata and Its Bioactive Compounds. Evid Based Complement Alternat Med, 2011, 212641. doi: 10.1093/ecam/nep108
    Gonzalez-Castejon, M., & Rodriguez-Casado, A. (2011). Dietary phytochemicals and their potential effects on obesity: a review. Pharmacol Res, 64(5), 438-455. doi: 10.1016/j.phrs.2011.07.004
    Gonzalez-Periz, A., & Claria, J. (2010). Resolution of adipose tissue inflammation. ScientificWorldJournal, 10, 832-856. doi: 10.1100/tsw.2010.77
    Gregoire, F. M., Smas, C. M., & Sul, H. S. (1998). Understanding adipocyte differentiation. Physiol Rev, 78(3), 783-809.
    Gwon, S. Y., Ahn, J. Y., Jung, C. H., Moon, B. K., & Ha, T. Y. (2013). Shikonin suppresses ERK 1/2 phosphorylation during the early stages of adipocyte differentiation in 3T3-L1 cells. BMC Complement Altern Med, 13, 207. doi: 10.1186/1472-6882-13-207
    Gwon, S. Y., Ahn, J. Y., Jung, C. H., Moon, B. K., & Ha, T. Y. (2013). Shikonin suppresses ERK 1/2 phosphorylation during the early stages of adipocyte differentiation in 3T3-L1 cells. BMC Complementary and Alternative Medicine, 13, 207.
    Henry, S. L., Bensley, J. G., Wood-Bradley, R. J., Cullen-McEwen, L. A., Bertram, J. F., & Armitage, J. A. (2012). White adipocytes: more than just fat depots. Int J Biochem Cell Biol, 44(3), 435-440. doi: 10.1016/j.biocel.2011.12.011
    Hseu, Y. C., Wu, F. Y., Wu, J. J., Chen, J. Y., Chang, W. H., Lu, F. J., et al. (2005). Anti-inflammatory potential of Antrodia Camphorata through inhibition of iNOS, COX-2 and cytokines via the NF-kappaB pathway. Int Immunopharmacol, 5(13-14), 1914-1925. doi: 10.1016/j.intimp.2005.06.013
    Hsiao, G., Shen, M. Y., Lin, K. H., Lan, M. H., Wu, L. Y., Chou, D. S., et al. (2003). Antioxidative and hepatoprotective effects of Antrodia camphorata extract. J Agric Food Chem, 51(11), 3302-3308. doi: 10.1021/jf021159t
    Hu, E., Kim, J. B., Sarraf, P., & Spiegelman, B. M. (1996). Inhibition of adipogenesis through MAP kinase-mediated phosphorylation of PPARgamma. Science, 274(5295), 2100-2103.
    Huang, C. C., Hsu, M. C., Huang, W. C., Yang, H. R., & Hou, C. C. (2012). Triterpenoid-Rich Extract from Antrodia camphorata Improves Physical Fatigue and Exercise Performance in Mice. Evid Based Complement Alternat Med, 2012, 364741. doi: 10.1155/2012/364741
    Inui, A. (2003). Obesity--a chronic health problem in cloned mice? Trends Pharmacol Sci, 24(2), 77-80. doi: 10.1016/s0165-6147(02)00051-2
    Karpe, F., Dickmann, J. R., & Frayn, K. N. (2011). Fatty Acids, Obesity, and Insulin Resistance: Time for a Reevaluation. Diabetes, 60(10), 2441-2449. doi: 10.2337/db11-0425/-/DC1
    Kersten, S. (2001). mechanism of nutritional and hormonal regylation. EMBO Rep., 2(4), 282-286.
    Kwak, D. H., Lee, J. H., Kim, T., Ahn, H. S., Cho, W. K., Ha, H., et al. (2012). Aristolochia manshuriensis Kom inhibits adipocyte differentiation by regulation of ERK1/2 and Akt pathway. PLoS One, 7(11), e49530. doi: 10.1371/journal.pone.0049530
    Lai, M. N., Ko, H. J., & Ng, L. T. (2012). Hypolipidemic Effects of Antrodia Cinnamomea Extracts in High-Fat Diet-Fed Hamsters. Journal of Food Biochemistry, 36(2), 233-239. doi: 10.1111/j.1745-4514.2010.00530.x
    Lee, I. H., Huang, R. L., Chen, C. T., Chen, H. C., Hsu, W. C., & Lu, M. K. (2002). Antrodia camphorata polysaccharides exhibit anti-hepatitis B virus effects. FEMS Microbiol Lett, 209(1), 63-67.
    Lii, C. K., Huang, C. Y., Chen, H. W., Chow, M. Y., Lin, Y. R., Huang, C. S., & Tsai, C. W. (2012). Diallyl trisulfide suppresses the adipogenesis of 3T3-L1 preadipocytes through ERK activation. Food Chem Toxicol, 50(3-4), 478-484. doi: 10.1016/j.fct.2011.11.020
    Liu, D. Z., Liang, H. J., Chen, C. H., Su, C. H., Lee, T. H., Huang, C. T., et al. (2007). Comparative anti-inflammatory characterization of wild fruiting body, liquid-state fermentation, and solid-state culture of Taiwanofungus camphoratus in microglia and the mechanism of its action. J Ethnopharmacol, 113(1), 45-53. doi: 10.1016/j.jep.2007.03.037
    Liu, J. J., Huang, T. S., Hsu, M. L., Chen, C. C., Lin, W. S., Lu, F. J., & Chang, W. H. (2004). Antitumor effects of the partially purified polysaccharides from Antrodia camphorata and the mechanism of its action. Toxicol Appl Pharmacol, 201(2), 186-193. doi: 10.1016/j.taap.2004.05.016
    Lo, H. C., Tsai, F. A., Wasser, S. P., Yang, J. G., & Huang, B. M. (2006). Effects of ingested fruiting bodies, submerged culture biomass, and acidic polysaccharide glucuronoxylomannan of Tremella mesenterica Retz.:Fr. on glycemic responses in normal and diabetic rats. Life Sci, 78(17), 1957-1966. doi: 10.1016/j.lfs.2005.08.033
    Lowe, C. E., O'Rahilly, S., & Rochford, J. J. (2011). Adipogenesis at a glance. J Cell Sci, 124(Pt 16), 2681-2686. doi: 10.1242/jcs.079699
    Lu, M. K., Cheng, J. J., Lai, W. L., Lin, Y. J., & Huang, N. K. (2008). Fermented Antrodia cinnamomea extract protects rat PC12 cells from serum deprivation-induced apoptosis: the role of the MAPK family. J Agric Food Chem, 56(3), 865-874. doi: 10.1021/jf072828b
    Mansen, A., Guardiola-Diaz, H., Rafter, J., Branting, C., & Gustafsson, J. A. (1996). Expression of the peroxisome proliferator-activated receptor (PPAR) in the mouse colonic mucosa. Biochem Biophys Res Commun, 222(3), 844-851. doi: 10.1006/bbrc.1996.0832
    Mau, J. L., Huang, P. N., Huang, S. J., & Chen, C. C. (2004). Antioxidant properties of methanolic extracts from two kinds of Antrodia camphorata mycelia. Food Chemistry, 86(1), 25-31. doi: 10.1016/j.foodchem.2003.08.025
    McArdle, M. A., Finucane, O. M., Connaughton, R. M., McMorrow, A. M., & Roche, H. M. (2013). Mechanisms of obesity-induced inflammation and insulin resistance: insights into the emerging role of nutritional strategies. Front Endocrinol (Lausanne), 4, 52. doi: 10.3389/fendo.2013.00052
    Michael, L. F., Lazar, M. A., & Mendelson, C. R. (1997). Peroxisome Proliferator-Activated Receptor g1. Endocrinology, 138, 3695-3703.
    Mizuno, T. (1996). Development of antitumor polysaccharides from mushroom fungi. Foods Ingred. J. Jpn., 167, 69-85.
    Moreno-Navarrete, J. M., & Fernández-Real, J. M. (2012). Adipocyte Differentiation. 17-38. doi: 10.1007/978-1-4614-0965-6_2
    Mueller, E., Sarraf, P., Tontonoz, P., Evans, R. M., Martin, K. J., Zhang, M., et al. (1998). Terminal differentiation of human breast cancer through PPAR gamma. Mol Cell, 1(3), 465-470.
    Newell, F. S., Su, H., Tornqvist, H., Whitehead, J. P., Prins, J. B., & Hutley, L. J. (2006). Characterization of the transcriptional and functional effects of fibroblast growth factor-1 on human preadipocyte differentiation. FASEB J, 20(14), 2615-2617. doi: 10.1096/fj.05-5710fje
    Nolan, E., O'Meara, Y. M., & Godson, C. (2013). Lipid mediators of inflammation in obesity-related glomerulopathy. Nephrol Dial Transplant, 28 Suppl 4, iv22-29. doi: 10.1093/ndt/gft392
    Ntambi, J. M., & Kim, Y. C. (2000). Adipocyte Differentiation and Gene Expression. J. Nutr., 130, 3122S-3126S.
    Ouchi, N., Parker, J. L., Lugus, J. J., & Walsh, K. (2011). Adipokines in inflammation and metabolic disease. Nat Rev Immunol, 11(2), 85-97. doi: 10.1038/nri2921
    Park, T., & Kim, Y. (2011). Phytochemicals as potential agents for prevention and treatment of obesity and metabolic diseases. Anti-Obesity Drug Discovery and Development, 1(00), 00.
    Park, U. H., Jeong, H. S., Jo, E. Y., Park, T., Yoon, S. K., Kim, E. J., et al. (2012). Piperine, a component of black pepper, inhibits adipogenesis by antagonizing PPARgamma activity in 3T3-L1 cells. J Agric Food Chem, 60(15), 3853-3860. doi: 10.1021/jf204514a
    Patwardhan, B., Warude, D., Pushpangadan, P., & Bhatt, N. (2005). Ayurveda and traditional Chinese medicine: a comparative overview. Evid Based Complement Alternat Med, 2(4), 465-473. doi: 10.1093/ecam/neh140
    Prusty, D., Park, B. H., Davis, K. E., & Farmer, S. R. (2002). Activation of MEK/ERK signaling promotes adipogenesis by enhancing peroxisome proliferator-activated receptor gamma (PPARgamma ) and C/EBPalpha gene expression during the differentiation of 3T3-L1 preadipocytes. J Biol Chem, 277(48), 46226-46232. doi: 10.1074/jbc.M207776200
    Rao, Y. K., Fang, S. H., & Tzeng, Y. M. (2007). Evaluation of the anti-inflammatory and anti-proliferation tumoral cells activities of Antrodia camphorata, Cordyceps sinensis, and Cinnamomum osmophloeum bark extracts. J Ethnopharmacol, 114(1), 78-85. doi: 10.1016/j.jep.2007.07.028
    Ravussin, E., & Bouchard, C. (2000). Human genomics and obesity: finding appropriate drug targets. Eur J Pharmacol, 410(2-3), 131-145.
    Rayalam, S., Della-Fera, M. A., & Baile, C. A. (2008). Phytochemicals and regulation of the adipocyte life cycle. J Nutr Biochem, 19(11), 717-726. doi: 10.1016/j.jnutbio.2007.12.007
    Rosen, E. D., Walkey, C. J., Puigserver, P., & Spiegelman, B. M. (2000). Transcriptional regulation of adipogenesis. GENES & DEVELOPMENT, 14, 1293-1307. doi: 10.1101/gad.14.11.1293
    Rossmeisl, M., Rim, J. S., Koza, R. A., & Kozak, L. P. (2003). Variation in type 2 diabetes--related traits in mouse strains susceptible to diet-induced obesity. Diabetes, 52(8), 1958-1966.
    Sato, A., Kawano, H., Notsu, T., Ohta, M., Nakakuki, M., Mizuguchi, K., et al. (2010). Antiobesity effect of eicosapentaenoic acid in high-fat/high-sucrose diet-induced obesity: importance of hepatic lipogenesis. Diabetes, 59(10), 2495-2504. doi: 10.2337/db09-1554
    Schadinger, S. E., Bucher, N. L., Schreiber, B. M., & Farmer, S. R. (2005). PPARgamma2 regulates lipogenesis and lipid accumulation in steatotic hepatocytes. Am J Physiol Endocrinol Metab, 288(6), E1195-1205. doi: 10.1152/ajpendo.00513.2004
    Seger, R., & Krebs, E. G. (1995). The MAPK signaling cascade. The FASEB Journal, 9(9), 726-735.
    Shao, D., & Lazar, M. A. (1997). Peroxisome proliferator activated receptor gamma, CCAAT/enhancer-binding protein alpha, and cell cycle status regulate the commitment to adipocyte differentiation. J Biol Chem, 272(34), 21473-21478.
    Shen, Y. C., Chou, C. J., Wang, Y. H., Chen, C. F., Chou, Y. C., & Lu, M. K. (2004). Anti-inflammatory activity of the extracts from mycelia of Antrodia camphorata cultured with water-soluble fractions from five different Cinnamomum species. FEMS Microbiol Lett, 231(1), 137-143. doi: 10.1016/s0378-1097(03)00953-4
    Shimba, S., Wada, T., & Tezuka, M. (2001). Arylhydrocarbon receptor (AhR) is involved in negative regulation of adipose differentiation in 3T3-L1 cells: AhR inhibits adipose differentiation independently of dioxin. J Cell Sci, 114(Pt 15), 2809-2817.
    Shu, C. H., & Lung, M. Y. (2008). Effect of culture pH on the antioxidant properties of Antrodia camphorata in submerged culture. Journal of the Chinese Institute of Chemical Engineers, 39(1), 1-8. doi: 10.1016/j.jcice.2007.04.010
    Singla, P., Bardoloi, A., & Parkash, A. A. (2010). Metabolic effects of obesity: A review. World J Diabetes, 1(3), 76-88. doi: 10.4239/wjd.v1.i3.76
    Smith, P. J., Wise, L. S., Berkowitz, R., Wan, C., & Rubin, C. S. (1988). Insulin-like growth factor-I is an essential regulator of the differentiation of 3T3-L1 adipocytes. J Biol Chem, 263(19), 9402-9408.
    Song, T. Y., & Yen, G. C. (2002). Antioxidant properties of Antrodia camphorata in submerged culture. J Agric Food Chem, 50(11), 3322-3327.
    Strissel, K. J., DeFuria, J., Shaul, M. E., Bennett, G., Greenberg, A. S., & Obin, M. S. (2010). T-cell recruitment and Th1 polarization in adipose tissue during diet-induced obesity in C57BL/6 mice. Obesity (Silver Spring), 18(10), 1918-1925. doi: 10.1038/oby.2010.1
    Suganami, T., Tanimoto-Koyama, K., Nishida, J., Itoh, M., Yuan, X., Mizuarai, S., et al. (2007). Role of the Toll-like receptor 4/NF-kappaB pathway in saturated fatty acid-induced inflammatory changes in the interaction between adipocytes and macrophages. Arterioscler Thromb Vasc Biol, 27(1), 84-91. doi: 10.1161/01.ATV.0000251608.09329.9a
    Tang, Q. Q., Otto, T. C., & Lane, M. D. (2003a). CCAAT/enhancer-binding protein beta is required for mitotic clonal expansion during adipogenesis. Proc Natl Acad Sci U S A, 100(3), 850-855. doi: 10.1073/pnas.0337434100
    Tang, Q. Q., Otto, T. C., & Lane, M. D. (2003b). Mitotic clonal expansion: a synchronous process required for adipogenesis. Proc Natl Acad Sci U S A, 100(1), 44-49. doi: 10.1073/pnas.0137044100
    Tontonoz, P., Hu, E., Devine, J., Beale, E. G., & Spiegelman, B. M. (1995). PPAR gamma 2 regulates adipose expression of the phosphoenolpyruvate carboxykinase gene. Mol Cell Biol, 15(1), 351-357.
    Tontonoz, P., Nagy, L., Alvarez, J. G., Thomazy, V. A., & Evans, R. M. (1998). PPARgamma promotes monocyte/macrophage differentiation and uptake of oxidized LDL. Cell, 93(2), 241-252.
    Wang, C. Y., & Liao, J. K. (2012). A mouse model of diet-induced obesity and insulin resistance. Methods Mol Biol, 821, 421-433. doi: 10.1007/978-1-61779-430-8_27
    Wang, J. H., Zha, X. Q., & Feng, B. J. (2010). Comparison of antitumor activities of different polysaccharide fractions from the stems of Dendrobium nobile Lindl. Carbohydrate Polymers, 79(1), 114-118.
    Wasser, S. P. (2002). Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides. Appl Microbiol Biotechnol, 60(3), 258-274. doi: 10.1007/s00253-002-1076-7
    Wen, C. P., David Cheng, T. Y., Tsai, S. P., Chan, H. T., Hsu, H. L., Hsu, C. C., & Eriksen, M. P. (2009). Are Asians at greater mortality risks for being overweight than Caucasians? Redefining obesity for Asians. Public Health Nutr, 12(4), 497-506. doi: 10.1017/S1368980008002802
    Winzell, M. S., & Ahrén, B. (2004). The High-Fat Diet–Fed Mouse. Diabetes 53, Suppl. 3, S215–S219.
    Wu, S. H., Ryvarden, L., & Chang, T. T. (1997). Antrodia camphorata ("niu-chang-chih"), new combination of a medicinal fungus in Taiwan. Botanical Bulletin of Academia Sinica, 38(4), 273-275.
    Xu, H., Barnes, G. T., Yang, Q., Tan, G., Yang, D., Chou, C. J., et al. (2003). Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest, 112(12), 1821-1830. doi: 10.1172/jci19451
    Yang, R., & Barouch, L. A. (2007). Leptin signaling and obesity: cardiovascular consequences. Circ Res, 101(6), 545-559. doi: 10.1161/CIRCRESAHA.107.156596
    Yeh, C. T., Rao, Y. K., Yao, C. J., Yeh, C. F., Li, C. H., Chuang, S. E., et al. (2009). Cytotoxic triterpenes from Antrodia camphorata and their mode of action in HT-29 human colon cancer cells. Cancer Lett, 285(1), 73-79. doi: 10.1016/j.canlet.2009.05.002
    Zhang, B., Berger, J., Zhou, G., Elbrecht, A., Biswas, S., White-Carrington, S., et al. (1996). Insulin- and mitogen-activated protein kinase-mediated phosphorylation and activation of peroxisome proliferator-activated receptor gamma. J Biol Chem, 271(50), 31771-31774.
    Zheng, J., Shen, N., Wang, S., & Zhao, G. (2013). Oat beta-glucan ameliorates insulin resistance in mice fed on high-fat and high-fructose diet. Food Nutr Res, 57. doi: 10.3402/fnr.v57i0.22754

    下載圖示
    QR CODE