研究生: |
林新茹 Lin, Shin-Ru |
---|---|
論文名稱: |
金屬(Rh, Ni)附載於不同載體(CeO2, BZDy)對乙醇氧化蒸氣重組反應影響 Mechanistic study of oxidative steam reforming of ethanol (OSRE) on CeO2 and Dy-doped BaZrO3 supported Rh and Ni catalysts |
指導教授: |
王禎翰
Wang, Jeng-Han |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 116 |
中文關鍵詞: | 乙醇氧化蒸氣重組反應 、氧化鈰 、鈣鈦礦結構 、銠 、鎳 |
英文關鍵詞: | oxidative steam reforming of ethanol, cerium oxide, perovskite, rhodium, nickle |
DOI URL: | https://doi.org/10.6345/NTNU202203634 |
論文種類: | 學術論文 |
相關次數: | 點閱:128 下載:2 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文利用銠(10 wt% Rh)及鎳(30 wt% Ni)金屬分別附載於具有氧空缺之氧化鈰(CeO2)及具有親水性之鋯酸鋇摻雜鏑(Dy-doped BaZrO3, BZDy),於300℃環境下進行乙醇氧化蒸氣重組反應,探討氧氣量多寡以及乙醇及水比例不同對催化劑之影響。實驗以PVP法及含浸法合成顆粒狀及粉末狀催化劑,進行物化性質鑑定以及催化反應活性。催化劑之晶相以及確認金屬存在、含量鑑定、還原性質、表面物種組成分別利用X光粉末繞射儀(XRD)、能量散射光譜(EDX)、程序升溫還原反應(TPR)、X光光電子能譜儀(XPS)鑑定以及利用原位漫反射紅外線傅立葉轉換光譜(in situ DRIFTS)推測反應路徑及中間產物。在實驗結果中,隨著氧氣量以及乙醇及水比例增加,提升乙醇轉換效率,乙醛選擇率下降並有助於氫氣生成,在過高氧氣條件下促進二氧化碳生成以及氫氣減少形成水。從四個催化劑(Rh,Ni)/(CeO2,BZDy)可以發現,銠及鎳金屬皆具有斷乙醇C-C鍵之特性並生成氫氣、甲烷、一氧化碳、二氧化碳。除此之外,鎳金屬可以斷來自水的OH鍵促使氫氣產率提升,並具有含碳溶解性,因此生成之碳氫產物與氫氣反應生成甲烷,具有較高之甲烷選擇率。以具有親氧性之氧化鈰以及親水性之鋯酸鋇摻雜鏑為載體之催化劑在高氧化境下皆具有高氫氣產率。最後,鎳金屬催化劑在乙醇比水1:7時,C/O ratio為0.8之條件下,有最好的氫氣產率140%。
The present work systematically examined oxidative steam reforming of ethanol (OSRE) on oxygen-active CeO2 and hydrophilic Dy-doped BaZrO3 (BZDy) supported Rh (10%) and Ni (30%) catalysts in various ethanol/oxygen/steam compositions at 300oC to investigate the environmental (oxygen and steam ratios) and catalyst (metal and oxide) effects on OSRE. The catalysts were initially synthesized by PVP and impregnation methods and characterized by powder X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX), temperature programmed reduction (TPR), X-ray photoelectron spectroscopy (XPS) for their crystallinity, chemical composition and oxidation states. The catalytic products were analyzed by gas chromagraphy (GC) and the key intermediates were identified by diffuse reflectance infrared fourier transform spectroscopy (DRIFTS). The experimental results with varied oxygen and steam compositions found that increases of oxygen or steam ratios can efficiently enhance the ethanol conversion and block the dehydrogenation pathway to reduce the acetaldehyde selectivity and improve hydrogen yield. The influence of oxygen is more significant than that of steam. Also, higher oxygen and steam ratios will promote full oxidation to raise the CO2 selectivity and diminish hydrogen yield. The experiments on the four catalysts (Rh,Ni)/(CeO2,BZDy) concluded that both Rh and Ni are highly active for C-C bond breaking of ethanol and produce mainly H2, CH4, CO and CO2. Additionally, Ni can better cleavage O-H bond to utilize the hydrogen from water for hydrogen production. Also, Ni can easily dissolve carbon to boost the high CH4 selectivity. The oxygen-active CeO2 and hydrophilic BZDy are highly sensitivity to the oxygen and steam ratios, but the effects from the two oxides are quite similar. Finally, the optimized condition correspond to Ni-based catalysts in ethanol/steam ratio of 1/7 and C/O ratio of 0.8 and give the best hydrogen yield at 140%.
第五章 參考資料
[1] M. Raud, J. Olt and T. Kikas, Biomass and Bioenergy 2016, 90, 1-6.
[2] S. B. Walker, U. Mukherjee, M. Fowler and A. Elkamel, International Journal of Hydrogen Energy 2016, 41, 7717-7731.
[3] Y. Eissa, M. Chiesa and H. Ghedira, Solar Energy 2012, 86, 1816-1825.
[4] R. E. Sims, W. Mabee, J. N. Saddler and M. Taylor, Bioresour Technol 2010, 101, 1570-1580.
[5] I. Janajreh, L. Su and F. Alan, Renewable Energy 2013, 52, 8-15.
[6] H. J. AlFarra and B. Abu-Hijleh, Energy Policy 2012, 42, 272-285.
[7] V. Fierro, O. Akdim and C. Mirodatos, Green Chemistry 2003, 5, 20-24.
[8] Z. Wang, L. Sun, F. Xu, H. Zhou, X. Peng, D. Sun, J. Wang and Y. Du, International Journal of Hydrogen Energy 2016, 41, 8489-8497.
[9] W. Su, Y. Zhu, J. Zhang, Y. Liu, Y. Yang, Q. Mao and L. Li, Journal of Alloys and Compounds 2016, 669, 8-18.
[10] A. A. Fathima, M. Sanitha, T. Kumar, S. Iyappan and M. Ramya, Bioresour Technol 2016, 202, 253-256.
[11] D. Widmann, R. Leppelt and R. Behm, Journal of Catalysis 2007, 251, 437-442.
[12] Y.-L. Song, L.-L. Yin, J. Zhang, P. Hu, X.-Q. Gong and G. Lu, Surface Science 2013, 618, 140-147.
[13] C.-C. Chou, C.-F. Huang and T.-H. Yeh, Ceramics International 2013, 39, S627-S631.
[14] Y. Jin, Z. Rui, Y. Tian, Y. S. Lin and Y. Li, Catalysis Today 2016, 264, 214-220.
[15] R. Thalinger, M. Gocyla, M. Heggen, R. Dunin-Borkowski, M. Grünbacher, M. Stöger-Pollach, D. Schmidmair, B. Klötzer and S. Penner, Journal of Catalysis 2016, 337, 26-35.
[16] S. Delima, I. Dacruz, G. Jacobs, B. Davis, L. Mattos and F. Noronha, Journal of Catalysis 2008, 257, 356-368.
[17] A. Erdőhelyi, J. Raskó, T. Kecskés, M. Tóth, M. Dömök and K. Baán, Catalysis Today 2006, 116, 367-376.
[18] N. Srisiriwat, S. Therdthianwong and A. Therdthianwong, International Journal of Hydrogen Energy 2009, 34, 2224-2234.
[19] P. Biswas and D. Kunzru, Chemical Engineering Journal 2008, 136, 41-49.
[20] T. F. Guiberti, C. Garnier, P. Scouflaire, J. Caudal, B. Labegorre, T. Schuller and N. Darabiha, International Journal of Hydrogen Energy 2016, 41, 8616-8626.
[21] S. Tada, T. Shimizu, H. Kameyama, T. Haneda and R. Kikuchi, International Journal of Hydrogen Energy 2012, 37, 5527-5531.
[22] H. Ay and D. Üner, Applied Catalysis B: Environmental 2015, 179, 128-138.
[23] C. Pirez, W. Fang, M. Capron, S. Paul, H. Jobic, F. Dumeignil and L. Jalowiecki-Duhamel, Applied Catalysis A: General 2016, 518, 78-86.
[24] R. A. Tufa, E. Rugiero, D. Chanda, J. Hnàt, W. van Baak, J. Veerman, E. Fontananova, G. Di Profio, E. Drioli, K. Bouzek and E. Curcio, Journal of Membrane Science 2016, 514, 155-164.
[25] A. Stoyanova, G. Borisov, E. Lefterova and E. Slavcheva, International Journal of Hydrogen Energy 2012, 37, 16515-16521.
[26] K. Ghasemzadeh, R. Zeynali and A. Basile, International Journal of Hydrogen Energy 2016, 41, 8696-8705.
[27] E. Boran, E. Özgür, J. van der Burg, M. Yücel, U. Gündüz and I. Eroglu, Journal of Cleaner Production 2010, 18, S29-S35.
[28] J. S. Geelhoed, H. V. Hamelers and A. J. Stams, Curr Opin Microbiol 2010, 13, 307-315.
[29] S. Danaci, L. Protasova, J. Lefevere, L. Bedel, R. Guilet and P. Marty, Catalysis Today 2016.
[30] P. Osorio-Vargas, N. A. Flores-González, R. M. Navarro, J. L. G. Fierro, C. H. Campos and P. Reyes, Catalysis Today 2016, 259, 27-38.
[31] S. S. Kim, S. J. Lee and S. C. Hong, Chemical Engineering Journal 2011, 169, 173-179.
[32] C.-C. Hung, S.-L. Chen, Y.-K. Liao, C.-H. Chen and J.-H. Wang, International Journal of Hydrogen Energy 2012, 37, 4955-4966.
[33] F. Ren, A. Zhi, D. Zhang, B. Tian, A. A. Volinsky and X. Shen, Journal of Alloys and Compounds 2015, 633, 323-328.
[34] M.-N. Chen, D.-Y. Zhang, L. T. Thompson and Z.-F. Ma, International Journal of Hydrogen Energy 2011, 36, 7516-7522.
[35] G. M. Zeng, Y. D. Li and U. Olsbye, Catalysis Today 2016, 259, 312-322.
[36] M. Kourtelesis, P. Panagiotopoulou, S. Ladas and X. E. Verykios, Topics in Catalysis 2015, 58, 1202-1217.
[37] G. Garbarino, A. R. Perez, E. Finocchio and G. Busca, Catalysis Communications 2013, 38, 67-73.
[38] P. K. Sharma, N. Saxena, P. K. Roy and A. Bhatt, Reaction Kinetics Mechanisms and Catalysis 2016, 117, 655-674.
[39] J. Y. Liu, W. N. Su, J. Rick, S. C. Yang, J. H. Cheng, C. J. Pan, J. F. Lee and B. J. Hwang, Chemsuschem 2014, 7, 570-576.
[40] A. Houteit, H. Mahzoul, P. Ehrburger, P. Bernhardt, P. Legare and F. Garin, Applied Catalysis a-General 2006, 306, 22-28.
[41] M. Dan, M. Mihet, A. R. Biris, P. Marginean, V. Almasan, G. Borodi, F. Watanabe, A. S. Biris and M. D. Lazar, Reaction Kinetics Mechanisms and Catalysis 2012, 105, 173-193.
[42] P. M. More, D. L. Nguyen, P. Granger, C. Dujardin, M. K. Dongare and S. B. Umbarkar, Applied Catalysis B-Environmental 2015, 174, 145-156.
[43] M. Z. Granlund, S. Zacherl and L. J. Pettersson, Topics in Catalysis 2015, 58, 933-938.
[44] D. Ghita, G. R. Brezeanu, D. S. Ezeanu and D. Cursaru, Revista De Chimie 2015, 66, 847-850.
[45] W.-H. Chen, C.-T. Shen, B.-J. Lin and S.-C. Liu, Energy 2015, 88, 399-407.
[46] D. Ghita, D. S. Ezeanu, P. Rosca and D. Cursaru, Revista De Chimie 2014, 65, 1395-1398.
[47] M. Kourtelesis, P. Panagiotopoulou and X. E. Verykios, Catalysis Today 2015, 258, 247-255.
[48] J. Nisamaneenate, D. Atong and V. Sricharoenchaikul, Environmental Technology 2012, 33, 2497-2505.
[49] E. Ramos, L. Davin, I. Angurell, C. Ledesma and J. Llorca, Chemcatchem 2015, 7, 2179-2187.
[50] P. Osorio-Vargas, C. H. Campos, R. M. Navarro, J. L. G. Fierro and P. Reyes, Applied Catalysis a-General 2015, 505, 159-172.
[51] M. Bilal and S. D. Jackson, Catalysis Science & Technology 2014, 4, 4055-4064.
[52] J. Toyir, P. Gelin, H. Belatel and A. Kaddouri, Catalysis Today 2010, 157, 451-455.
[53] N. Dhifallah, O. Turki, M. El Marssi, M. Dammak and H. Khemakhem, Ceramics International 2016, 42, 6657-6663.
[54] V. V. Thyssen, T. A. Maia and E. M. Assaf, Journal of the Brazilian Chemical Society 2015, 26, 22-31.
[55] G.-L. Liu, T. Niu, A. Cao, Y.-X. Geng, Y. Zhang and Y. Liu, Fuel 2016, 176, 1-10.
[56] a) P. Osorio-Vargas, N. A. Flores-Gonzalez, R. M. Navarro, J. L. G. Fierro, C. H. Campos and P. Reyes, Catalysis Today 2016, 259, 27-38; b) G. Garbarino, A. Romero Perez, E. Finocchio and G. Busca, Catalysis Communications 2013, 38, 67-73.
[57] H. Li, Y. Zhang, Y. Mei, Y. Sun, Q. Zou, W. Chen and R. Liu, Rare Metal Materials and Engineering 2015, 44, 1269-1272.
[58] L. V. Mattos, G. Jacobs, B. H. Davis and F. B. Noronha, Chem Rev 2012, 112, 4094-4123.
[59] S. M. Choi, J. H. Lee, M. B. Choi, J. Hong, K. J. Yoon, B. K. Kim, H. W. Lee and J. H. Lee, Journal of the Electrochemical Society 2015, 162, F789-F795.
[60] H. Iwahara, T. Esaka, T. Sato and T. Takahashi, Journal of Solid State Chemistry 1981, 39, 173-180.
[61] S. Fang, K. S. Brinkman and F. Chen, Journal of Membrane Science 2014, 467, 85-92.
[62] X. Liao, Y. Zhang, M. Hill, X. Xia, Y. Zhao and Z. Jiang, Applied Catalysis A: General 2014, 488, 256-264.
[63] W. Cai, F. Wang, A. C. Van Veen, H. Provendier, C. Mirodatos and W. Shen, Catalysis Today 2008, 138, 152-156.
[64] B. de Caprariis, P. de Filippis, V. Palma, A. Petrullo, A. Ricca, C. Ruocco and M. Scarsella, Applied Catalysis A: General 2016, 517, 47-55.
[65] C. Italiano, R. Balzarotti, A. Vita, S. Latorrata, C. Fabiano, L. Pino and C. Cristiani, Catalysis Today 2016.
[66] A. M. da Silva, L. V. Mattos, J. Múnera, E. Lombardo, F. B. Noronha and L. Cornaglia, International Journal of Hydrogen Energy 2015, 40, 4154-4166.
[67] G. Pantaleo, V. L. Parola, F. Deganello, R. K. Singha, R. Bal and A. M. Venezia, Applied Catalysis B: Environmental 2016, 189, 233-241.
[68] T. Mondal, K. K. Pant and A. K. Dalai, International Journal of Hydrogen Energy 2015, 40, 2529-2544.
[69] L. Pastor-Pérez, R. Buitrago-Sierra and A. Sepúlveda-Escribano, International Journal of Hydrogen Energy 2014, 39, 17589-17599.
[70] Z. Ferencz, A. Erdőhelyi, K. Baán, A. Oszkó, L. Óvári, Z. Kónya, C. Papp, H. P. Steinrück and J. Kiss, ACS Catalysis 2014, 4, 1205-1218.
[71] A. M. da Silva, K. R. de Souza, G. Jacobs, U. M. Graham, B. H. Davis, L. V. Mattos and F. B. Noronha, Applied Catalysis B: Environmental 2011, 102, 94-109.
[72] I. Luisetto, S. Tuti, C. Battocchio, S. Lo Mastro and A. Sodo, Applied Catalysis A: General 2015, 500, 12-22.
[73] E. Varga, Z. Ferencz, A. Oszkó, A. Erdőhelyi and J. Kiss, Journal of Molecular Catalysis A: Chemical 2015, 397, 127-133.
[74] T. Hou, B. Yu, S. Zhang, T. Xu, D. Wang and W. Cai, Catalysis Communications 2015, 58, 137-140.
[75] C. H. Campos, P. Osorio-Vargas, N. Flores-González, J. L. G. Fierro and P. Reyes, Catalysis Letters 2015, 146, 433-441.
[76] M. Sanchezsanchez, R. Navarro and J. Fierro, International Journal of Hydrogen Energy 2007, 32, 1462-1471.
[77] M. H. Youn, J. G. Seo, J. C. Jung, S. Park, D. R. Park, S.-B. Lee and I. K. Song, Catalysis Today 2009, 146, 57-62.
[78] T. Mondal, K. K. Pant and A. K. Dalai, Applied Catalysis A: General 2015, 499, 19-31.
[79] A. Yee, S. J. Morrison and H. Idriss, Catalysis Today 2000, 63, 327-335.
[80] G. Pantaleo, V. La Parola, F. Deganello, P. Calatozzo, R. Bal and A. M. Venezia, Applied Catalysis B: Environmental 2015, 164, 135-143.
[81] K. Kuchynka, Collection of Czechoslovak Chemical Communications 1965, 30, 613-&.
[82] T. S. Moraes, R. C. Rabelo Neto, M. C. Ribeiro, L. V. Mattos, M. Kourtelesis, S. Ladas, X. Verykios and F. B. Noronha, Applied Catalysis B: Environmental 2016, 181, 754-768.
[83] W. Xu, Z. Liu, A. C. Johnston-Peck, S. D. Senanayake, G. Zhou, D. Stacchiola, E. A. Stach and J. A. Rodriguez, ACS Catalysis 2013, 3, 975-984.
[84] P. Osorio-Vargas, C. H. Campos, R. M. Navarro, J. L. G. Fierro and P. Reyes, Applied Catalysis A: General 2015, 505, 159-172.