研究生: |
何智豊 Jhih-Li, He |
---|---|
論文名稱: |
設計合成及活性評估用以探測 OMP Decarboxylase 反應機制之 Uridine 衍生物 Design、Synthesis and Biological Evaluation of Uridine Derivatives as Mechanistic Probes for OMP Decarboxylase |
指導教授: | 簡敦誠 |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 中文 |
論文頁數: | 141 |
中文關鍵詞: | 酵素 、核酸 、機制 |
英文關鍵詞: | OMP decarboxylase, uridine derivatives, pseudouridine, bioisosteric replacement |
論文種類: | 學術論文 |
相關次數: | 點閱:144 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
Orotidine 5'-monophosphate decarboxylase (ODCase) 催化的orotidine 5'-monophosphate (OMP) 去羧基反應是生物體內合成pyrimidine類核酸化合物重要步驟。針對ODCase酵素及其受質的研究已發現,應用在抗病毒、抗瘧疾及抗癌等疾病上相當有發展的潛力。為了解ODCase催化機制,利用可能成為ODCase受質或抑制劑的化合物與該酵素反應後,觀察結果推測;因此,考慮在uridine鹼基上C6位置作官能基修飾及置換的可能性,設計並準備合成一系列的OMP類似物,其中包含有C-nucleoside及N-nucleoside的類似物。
OMP C-nucleoside的類似物包括有pseudouridine及其衍生物。利用文獻中的合成方法,可由5-bromouracil製備醣具保護的pseudouridine。我們亦嘗試利用合成pseudouridine的方法來製備6-methylpseudouridine,但因進行C-ribosylation時反應的位置是在鹼基環外C6的甲基上,而非預期中的環上C5位置,結果並沒有成功。
設計合成OMP類似物的N-nucleoside方面包含,在鹼基C6位置上的tetrazoles, amide oximes, imidates 及親核性取代基的置換;反應起始物6-cyanouridine的衍生物由文獻合成方法製備而成;6-(tetrazol-5-yl)uridine,從uridine開始製備,經形成6-cyanouridine後與sodium azide進行環化加成反應,經六個合成步驟後可以得到,總產率約29 %。Amide oxime官能基衍生物方面,經由6-cyanouridine的中間產物進行合成,但因醣上保護基移除時所產生的不穩定性,而無法得到。以親核性取代基對6-cyanouridine衍生物上cyano官能基直接進行取代反應也無法順利得到產物。在本篇論文中,我們已成功合成出6-(tetrazol-5-yl)uridine;此化合物是OMP的bioisostere,可用來作為探測ODCase反應機制的受質或抑制劑。
Abstract
Orotidine 5'-monophosphate decarboxylase (ODCase) catalyzes the decarboxylation of orotidine 5'-monophosphate (OMP), an essential step in pyrimidine nucleic acid biosynthesis. It has been identified as a potential target for antiviral, antiparasitic and antitumor therapies. In order to develop effective mechanistic probes to disclose the possible mechanisms for ODCase, a series of OMP analogs modified at the C6- position of uridine were designed and prepared to synthesize, including N-nucleoside and C-nucleoside analogs.
The C-nucleoside analogs of OMP / UMP included pseudouridine and its derivatives. The sugar protected pseudouridine was prepared based on literature procedures from 5-bromouracil. However, attempts to synthesize 6-methylpseudouridine based on the same approach were unsuccessful. The C-ribosylation occurred at the exocyclic methyl group, instead of the expected pyrimidine ring carbon.
The N-nucleoside analogs of OMP designed based on bioisosteric replacement of carboxylate including derivatives with tetrazoles, amide oximes, imidates and nucleophilic substituents on the C6 position of uridine. 6-Cyanouridine derivatives were prepared from uridine by literature procedures as starting materials. 6-(Tetrazol-5-yl)uridine was prepared from uridine through the cycloaddition of 6-cyanouridine intermediate with sodium azide in 6 steps with an over yield of 29 %. Amide oxime functional group was also obtain from the reaction of 6-cyanouridine with hydroxylamine. However, the removal of sugar protecting groups were unsuccessful. Direct substitutions of the cyano group of 6-cyanouridine derivatives with nucleophiles were unsuccessful. In this thesis, we have successfully synthesized 6-(tetrazol-5-yl)uridine. It is a bioisostere of OMP and potential mechanistic probe for ODCase.
參考文獻
1. Radzicka, A.; Wolfenden, R. A Proficient Enzyme. Science 1995, 267, 90-93.
2. Miller, B. G.; Wolfenden, R. Catalytic proficiency: The unusual case of OMP decarboxylase. Annu. ReV. Biochem. 2002, 71, 847-885.
3. Sievers, A.; Wolfenden, R. Equilibrium of formation of the 6-carbanion of UMP, a potential intermediate in the action of OMP decarboxylase. J. Am. Chem. Soc. 2002, 124, 13986-13987.
4. Snider, M. J.; Wolfenden, R. The rate of spontaneous decarboxylation of amino acids. J. Am. Chem. Soc. 2000, 122, 11507-11508.
5. Houk, K. N.; Tantillo, D. J.; Stanton, C.; Hu, Y. F. What have theory and crystallography revealed about the mechanism of catclysis by orotidine monophosphate decarboxylase? Top Curr Chem, 2003, 238, 1–22.
6. Jones, M. E. Pyrimidine nucleotide biosynthesis in animals: Genes, enzymes, and regulation of UMP biosynthesis. Annu. ReV. Biochem. 1980, 49, 253-279.
7. Gero, A. M.; O’Sullivan, W. J. Purines and pyrimidines in malarial parasites. Blood Cells, 1990, 16, 467-484.
8. Levine, H. L.; Brody, R. S.; Westheimer, F. H. Inhibition of Orotidine-5’-Phosphate Decarboxylase by 1-(5’-Phospho–Beta -D-Ribofuranosyl)Barbituric acid, 6-Azauridine 5’-Phosphate, and Uridine 5’-Phosphate. Biochemistry 1980, 19, 4993-4999.
9. Ringer, D. P.; Howell, B. A.; Etheredge, J. L. Alteration in de novo pyrimidine biosynthesis during uridine reversal of pyrazofurin -inhibited DNA synthesis. J. Biolchem. Toxicol. 1991, 6, 19-27.
10. Cadman, E. C.; Dix, D. E.; Handschumacher, R. E. Clinical, biological and biochemical effect of pyrazofurin. Cancer Res. 1978, 38, 682-698.
11. Silverman, R. B.; Groziak, M. P. Model Chemistry for a Covalent Mechanism of Action of Orotidine 5’-Phosphate Decarboxylase. J. Am. Chem. Soc. 1982, 104, 6434-6439.
12. Acheson, S. A.; Bell, J. B.; Jones, M. E.; Wolfenden, R. Orotidine-5’-Monophosphate Decarboxylase Catalysis – Kinetic Isotope Effects and the State of Hybridization of a Bound Transition- State Analog. Biochemistry 1990, 29, 3198-3202.
13. Shostak, K.; Jones, M. E. Orotidylate Decarboxylase – Insights into the Catalytic Mechanism from Substrate-Specificity Studies. Biochemistry 1992, 31, 12155-12161.
14. Wu, N.; Pai, E. F. Crystal structures of inhibitor complexes reveal an alternate bindingmode in orotidine-5’-monophosphate decarboxylase. J. Biol. Chem. 2002, 277, 28080-28087.
15. Houk, K. N.; Lee, J. K.; Tantillo, D. J.; Bahmanyar, S.; Hietbrink, B. N. Crystal structures of orotidine monophosphate decarboxylase:Dose the structure reveal the mechanism of nature’s most proficient enzyme? Chembiochem 2001, 2, 113-118.
16. Miller, B. G.; Hassell, A. M.; Wolfenden, R.; Milburn, M. V.; Short, S. A. Anatomy of a proficient enzyme: The structure of orotidine-5’-monophosphate decarboxylase in the presence and absence of a potential transition state analog. Proc. Natl. Acad. Sci. USA 2000, 97, 2011-2016.
17. Miller, B. G.; Hassell, A. M.; Wolfenden, R.; Milburn, M. V.; Short, S. A. Anatomy of a proficient enzyme: The structure of OMP decarboxylase in the absence and presence of a postulated transition state analog. Biochemistry 2000, 39, 1560-1560.
18. Harris, P.; Poulsen, J. C. N.; Jensen, K. F.; Larsen, S. Structural basis for the catalytic mechanism of a proficient enzyme: Orotidine-5’-monophosphate decarboxylase. Biochemistry 2000, 39, 4217-4224.
19. Ning, W.; Pai, E. F. Crystallographic studies of native and mutant orotidine-5’-monophosphate decarboxylase. Top. Curr. Chem. 2004, 238, 23-42.
20. Begley, T. P.; Ealick, S. E. Enzymatic reactions involving novel mechanisms of carbanion stabilization. Curr. Opin. Chem. Biol. 2004, 8, 508-515.
21. Beak, P.; Siegel, B. Mechanism of decarboxylation of 1,3-dimethylorotic acid. A model for orotidine 5'-phosphate Decarboxylase. J. Am. Chem. Soc. 1976, 98, 3601.
22. Lee, J. K.; Houk, K. N. A Proficient Enzyme Revisited: The Predicted Mechanism for Orotidine Monophosphate Decarboxylase. Science 1997, 276, 942.
23. Lee, T. S.; Chong, L. T.; Chodera, J. D.; Kollman, P. An Alternative Explanation for the Catalytic Proficiency of Orotidine 5'-Phosphate Decarboxylase. J. Am. Chem. Soc. 2001, 123, 12837.