研究生: |
蘇文嵩 Wen-Sung Su |
---|---|
論文名稱: |
高氮沈降區赤楊在演替上是否具促進作用 Does alder facilitate succession in regions with high nitrogen deposition? |
指導教授: |
林登秋
Lin, Teng-Chiu 江智民 Chiang, Jyh-Min |
學位類別: |
碩士 Master |
系所名稱: |
生命科學系 Department of Life Science |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 中文 |
論文頁數: | 54 |
中文關鍵詞: | 植群演替 、促進作用 、氮沈降 、畢祿溪 、臺灣赤楊 |
英文關鍵詞: | plant succession, facilitation, high nitrogen deposition, Piluchi river, Formosan Alder |
論文種類: | 學術論文 |
相關次數: | 點閱:287 下載:27 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
了解植物群落演替的過程及其驅動力,有助於了解影響植群結構與功能之環境與生物因子,因此是生態學上備受關注的研究議題。促進型演替模式中,演替早期物種通過直接或間接的方式,改變環境使其更適合演替後期物種的生長。在初級演替早期階段土壤環境條件惡劣,常須經由先驅物種改變土壤環境,後期物種才有機會在此生存,因此在演替早期階段常由草本及先驅木本植物引發演替促進作用,而土壤中的氮經常是此時期植物生長的限制因子。台灣中部山區的畢祿溪上游旁有著如同階梯狀的河階地形,每層河階因為經歷連續不同的演替時間,因此組成一個連續性的演替序列,在其中一階的河階上生長一片臺灣赤楊(Alnus formosana)的純林,臺灣赤楊屬於榿木屬(Alnus)的植物,許多溫帶地區的研究指出榿木屬的植物可以增加土壤中的氮含量,從而促進演替後期樹種的生長。但臺灣地區大氣氮沈降量相當高,甚至超過許多溫帶生態系的臨界負荷量,因此能與固氮微生物共生的赤楊是否仍扮演著重要的促進角色並不清楚。本試驗透過檢驗 (1)不同演替時期的土壤質地、營養元含量及物種多樣性的差異以及 (2)赤楊的密度是否與土壤條件以及松樹小苗生長率有正向關係,借此探討赤楊是否在畢祿溪上游的河階地植物群落演替中具有促進作用。本試驗地點的畢祿溪河階分成四階,接近溪流的前兩階屬於演替早期階段,植被主要以一年生草本植物主;較遠離溪流的第三階,其植被主要以臺灣赤楊為優勢物種;最遠離溪流的第四階屬於演替較晚期階段,植被以臺灣二葉松(Pinus taiwanensis)為優勢物種之天然林。然研究結果顯示,四個不同演替時期的土壤皆為沙質土壤;在赤楊為優勢物種的生物群落,土壤氮濃度及物種多樣性皆高於更早的演替時期。然研究亦發現,赤楊枯落物之覆蓋度與土壤及松樹小苗葉片之氮濃度呈現顯著正相關,但葉片氮濃度與松樹小苗的相對生長率無顯著的相關,反而位於赤楊附近之松樹小苗相對生長率有受抑制的現象。小苗所接受到的光量與赤楊密度呈現顯著負相關,然松樹小苗的相對生長率卻與接受到的光量呈現顯著正相關,推測赤楊附近之松樹小苗生長受抑制的現象可能是因光遮蔽的緣故所致。因此推斷在高氮沈降地區,赤楊似乎未能促進演替後期植物的建立。
Investigating the process of plant community succession and its driving force may contribute to the understanding in the structure and function of plant community. Therefore, it receives much attention in ecology. In the facilitation model of succession, early successional species directly or indirectly change the environment and make it suitable for the growth of later successional species. In the early stages of primary succession, pioneer species change the harsh soil environment so that the later successional species have the opportunity to survive. At this stage, herbs and pioneer woody plants initiate the succession facilitation, and nitrogen is a common limiting factor for plant growth in the soil. In the river terraces near upstream of Piluchi river in Center Mountain Ranges of Taiwan. The durations of vegetation development since the last major flood were different for each terrace surfaces, forming a chronosequence for the study of succession. Taiwan alder (Alnus formosana) dominates one terrace surface in our study area. Many studies in the temperate region indicates that Alnus can increase soil nitrogen availability, thereby facilitate the growth of later successional tree species. Under the high level of atmospheric nitrogen deposition that exceeded the critical load reported for many temperate forests, it is not clear whether nitrogen fixer like alder can still facilitate succession in regions with such high nitrogen deposition. This study examined the role of alder on community succession in Piluchi river terraces by investigating (1) the difference in the soil texture, soil nitrogen concentration and species diversity among communities of different successional stages and (2) the relationship between alder density and the growth rate of pine seedlings and the soil properties. The Piluchi river terraces are divided into four surfaces. The vegetation at the first and second terrace surfaces from the river side are considered the earlier successional stages, where major vegetation is annual herb. The third terrace surface is farther from the stream and its dominant plant is alder. The vegetation at the fourth terrace surface is considered the later successional stage and its dominant plant is pine (Pinus taiwanensis). The results indicate that the soils of four successional stages all had sandy texture. Where alder was the dominant species, soil nitrogen and species diversity were higher than those in the earlier successional stages. The coverage of alder is positively related to nitrogen concentration of soil and pine seedlings, but not related to the growth of pine seedlings. The growth of pine seedlings is inhibited by alders. Alder density is negatively related to light availability of pine seedlings. The growth of pine seedlings is likely inhibited by alders because the relative height growth of pine seedlings increased with increasing light level. Our results suggest that in regions with high nitrogen deposition, alder may not facilitate the establishment of later successional species.
丁世彬。2008。農業活動對臺灣中部高山森林生態系營養輸入與輸出之影響。國立彰化師範大學地理學系碩士論文。
林登秋、金恆鑣、夏禹九、王立志。1998。福山試驗林硫酸根與無機氮沉降之探討。中華林學季刊,31(2):153–164。
陸象豫、唐凱軍、黃惠雪。1999。林業試驗所畢祿溪工作站氣象資料1971-1998。 臺灣省林業試驗所。
薛美莉。2000。臺灣中部山區降雨水質及酸性沉降。特有生物研究,2:21–33。
簡意婷。2008。棲蘭山樣區大氣沉降之5年研究。國立東華大學自然資源管理研究所碩士論文。
Abdul-Wahab, A., and E. Rice. 1967. Plant inhibition by Johnson grass and its possible significance in old-field succession. Bulletin of the Torrey Botanical Club 94:486–497.
Aber, J., and K. Nadelhoffer. 1989. Nitrogen saturation in northern forest ecosystems. BioScience 39:378–386.
Bechtold, J. S., and R. J. Naiman. 2009. A quantitative model of soil organic matter accumulation during floodplain primary succession. Ecosystems 12:1352–1368.
Bidleman, T. F. 1988. Atmospheric processes. Environmental Science & Technology 22:361–367.
Binkley, D., and P. Matson. 1983. Ion exchange resin bag method for assessing forest soil nitrogen availability. Soil Science Society of America Journal 47:1050–1052.
Binkley, D., P. Sollins, R. Bell, D. Sachs, and D. Myrold. 1992. Biogeochemistry of adjacent conifer and alder-conifer stands. Ecology 73:2022–2033.
Burbank, D. W., and R. S. Anderson. 2000. Tectonic geomorphology. Malden: Blackwell.
Callaway, R. 1995. Positive interactions among plants. The Botanical Review 61:306–349.
Callaway, R. M., and L. King. 1996. Temperature-driven variation in substrate oxygenation and the balance of competition and facilitation. Ecology 77:1189–1195.
Callaway, R. M., and L. R. Walker. 1997. Competition and facilitation: a synthetic approach to interactions in plant communities. Ecology 78:1958–1965.
Chapin, F. S., L. R. Walker, C. L. Fastie, and L. C. Sharman. 1994. Mechanisms of primary succession following deglaciation at Glacier Bay, Alaska. Ecological Monographs 64:149–175.
Chen, C., N. Lin, C. Peng, and F. Jeng. 1996. Acidic deposition on Taiwan and associated precipitation systems. International Conference on Acid Deposition in East Asia, Taipei ,Taiwan, 20-30 May 1996:124–132.
Clements, F. 1916. Plant succession: an analysis of the development of vegetation. Washington: Carnegie Institution of Washington.
Connell, J., and R. Slatyer. 1977. Mechanisms of succession in natural communities and their role in community stability and organization. American Naturalist 111:1119–1144.
Cowling, E. B., J. W. Erisman, S. M. Smeulders, S. C. Holman, and B. M. Nicholson. 1998. Optimizing air quality management in Europe and North America: Justification for integrated management of both oxidized and reduced forms of nitrogen. Environmental Pollution 102:599–608.
Dise, N. B., and R. F. Wright. 1995. Nitrogen leaching from European forests in relation to nitrogen deposition. Forest Ecology and Management 71:153–161.
Fastie, C. L. 1995. Causes and ecosystem consequences of multiple pathways of primary succession at Glacier Bay, Alaska. Ecology 76:1899–1916.
Fenn, M. E., M. A. Poth, J. D. Aber, J. S. Baron, B. T. Bormann, D. W. Johnson, A. D. Lemly, S. G. McNulty, D. E. Ryan, and R. Stottlemyer. 1998. Nitrogen excess in North American ecosystems: predisposing factors, ecosystem responses, and management strategies. Ecological Applications 8:706–733.
Fetcher, N., B. L. Haines, R. A. Cordero, D. J. Lodge, L. R. Walker, D. S. Fernandez, and W. T. Lawrence. 1996. Responses of tropical plants to nutrients and light on a landslide in Puerto Rico. Journal of Ecology 84:331–341.
Franks, S. J. 2003. Facilitation in multiple life-history stages: evidence for nucleated succession in coastal dunes. Plant Ecology 168:1–11.
Galloway, J. N. 1998. The global nitrogen cycle: changes and consequences. Environmental Pollution 102:15–24.
Galloway, J. N., W. C. Keene, and G. E. Likens. 1996. Processes controlling the composition of precipitation at a remote southern hemispheric location: Torres del Paine National Park, Chile. Journal of Geophysical Research: Atmospheres 101:6883–6897.
Galloway, J. N., G. E. Likens, W. C. Keene, and J. M. Miller. 1982. The composition of precipitation in remote areas of the world. Journal of Geophysical Research: Oceans 87:8771–8786.
Gilliam, F. S. 2006. Response of the herbaceous layer of forest ecosystems to excess nitrogen deposition. Journal of Ecology 94:1176–1191.
Greenlee, J. T., and R. M. Callaway. 1996. Abiotic stress and the relative importance of interference and facilitation in montane bunchgrass communities in western Montana. American Naturalist 148:386–396.
Heilman, P. E. 1966. Change in distribution and availability of nitrogen with forest succession on north slopes in interior Alaska. Ecology 47:825–831.
Hsiao, H., T. Lin, J. Hwong, C. Huang, and N. Lin. 2007. Precipitation chemistry at the Lienhuachi experimental forest in central Taiwan. Taiwan Journal of Forest Science 22:1–13.
Hsueh, M. 2000. Precipitaion chemistry acid deposition in a mountain area of central Taiwan. Endemic Species Research 2:21–33.
Ibáñez, I., J. S. Clark, and M. C. Dietze. 2009. Estimating colonization potential of migrant tree species. Global Change Biology 15:1173–1188.
Jost, L. 2006. Entropy and diversity. Oikos 113:363–375.
Keever, C. 1950. Causes of succession on old fields of the Piedmont, North Carolina. Ecological Monographs 20:229–250.
Krupa, S. V. 2003. Effects of atmospheric ammonia (NH3) on terrestrial vegetation: a review. Environmental Pollution 124:179–221.
Likens, G. E., W. C. Keene, J. M. Miller, and J. N. Galloway. 1987. Chemistry of precipitation from a remote, terrestrial site in Australia. Journal of Geophysical Research: Atmospheres 92:13299–13314.
Lin, T., and J. Chiang. 2002. Applications of hemispherical photographs in studies of forest ecology. Taiwan Journal of Forest Science 17:387–400.
Liu, C., and B. Sheu. 1999. Distribution and chemical characteristics of nutrients in throughfall and stemflow of three different stands. Quarterly Journal of Forest Research 21(2):51-59.
Martínez, M. L. 2003. Facilitation of seedling establishment by an endemic shrub in tropical coastal sand dunes. Plant Ecology 168:333–345.
Matson, P., K. A. Lohse, and S. J. Hall. 2002. The globalization of nitrogen deposition: consequences for terrestrial ecosystems. AMBIO 31:113–119.
McNulty, S. G., J. D. Aber, and S. D. Newman. 1996. Nitrogen saturation in a high elevation New England spruce-fir stand. Forest Ecology and Management 84:109–121.
Nihlgård, B. 1985. The ammonium hypothesis: an additional explanation to the forest dieback in Europe. AMBIO 14:2–8.
Phoenix, G. K., W. K. Hicks, S. Cinderby, J. C. I. Kuylenstierna, W. D. Stock, F. J. Dentener, K. E. Giller, A. T. Austin, R. D. B. Lefroy, B. S. Gimeno, M. R. Ashmore, and P. Ineson. 2006. Atmospheric nitrogen deposition in world biodiversity hotspots: the need for a greater global perspective in assessing N deposition impacts. Global Change Biology 12:470–476.
Reiners, W. A., I. A. Worley, and D. B. Lawrence. 1971. Plant diversity in a chronosequence at Glacier Bay, Alaska. Ecology 52:55–69.
Saccone, P., J.-P. Pagès, J. Girel, J.-J. Brun, and R. Michalet. 2010. Acer negundo invasion along a successional gradient: early direct facilitation by native pioneers and late indirect facilitation by conspecifics. New Phytologist 187:831–842.
Schlesinger, W. H., and A. E. Hartley. 1992. A global budget for atmospheric NH3. Biogeochemistry 15:191–211.
Schroeder, W. H., and J. Munthe. 1998. Atmospheric mercury—an overview. Atmospheric Environment 32:809–822.
Schulze, E.-D., W. Vries, M. Hauhs, K. Rosén, L. Rasmussen, C.-O. Tamm, and J. Nilsson. 1989. Critical loads for nitrogen deposition on forest ecosystems. Water, Air, and Soil Pollution 48:451–456.
Sprent, J., and R. Parsons. 2000. Nitrogen fixation in legume and non-legume trees. Field Crops Research 65:183–196.
Stevens, C. J., C. Duprè, E. Dorland, C. Gaudnik, D. J. G. Gowing, A. Bleeker, M. Diekmann, D. Alard, R. Bobbink, D. Fowler, E. Corcket, J. O. Mountford, V. Vandvik, P. A. Aarrestad, S. Muller, and N. B. Dise. 2010. Nitrogen deposition threatens species richness of grasslands across Europe. Environmental Pollution 158:2940–2945.
Tarrant, R., and J. Trappe. 1971. The role of Alnus in improving the forest environment. Plant and Soil (special volume) 1971:335–348.
Taylor, A. R., H. Y. H. Chen, and L. VanDamme. 2009. A review of forest succession models and their suitability for forest management planning. Forest Science 55:23–36.
Tilman, D. 1987. Secondary succession and the pattern of plant dominance along experimental nitrogen gradients. Ecological Monographs 57:190–214.
Vitousek, P. M., J. D. Aber, R. W. Howarth, G. E. Likens, P. A. Matson, D. W. Schindler, W. H. Schlesinger, and D. G. Tilman. 1997. Human alteration of the global nitrogen cycle: sources and consequences. Ecological Applications 7:737–750.
Vitousek, P. M., J. R. Gosz, C. C. Grier, J. M. Melillo, W. A. Reiners, and R. L. Todd. 1979. Nitrate losses from disturbed ecosystems. Science 204:469–474.
Vitousek, P. M., and R. W. Howarth. 1991. Nitrogen limitation on land and in the sea: How can it occur? Biogeochemistry 13:87–115.
Wang, H., and T. Lin. 2006. Decisions affecting estimations of understory light environments during photograph acquisition, storage, and analysis using hemispherical photography. Taiwan Journal of Forest Science 21:281–296.
Wilson, J. B., and D. Q. Agnew. 1992. Positive-feedback switches in plant communities. Advances in Ecological Research 23:263–336.