研究生: |
吳秉謙 Wu, Bin-Chian |
---|---|
論文名稱: |
雙雜質鐵磷化物超導體的向列性質 Nematicity in Iron-Pnictide Superconductors with Two Impurities |
指導教授: |
陳鴻宜
Chen, Hong-Yi |
口試委員: |
陳鴻宜
Chen, Hong-Yi 楊志開 Yang, Chih-Kai 陳穎叡 Chen, Yiing-Rei |
口試日期: | 2022/05/02 |
學位類別: |
碩士 Master |
系所名稱: |
物理學系 Department of Physics |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 英文 |
論文頁數: | 62 |
中文關鍵詞: | 鐵基超導體 、向列態 、局域態密度 、量子干涉效應 、大型矩陣的對角化 |
英文關鍵詞: | iron-based superconductors, nematic states, local density of states, quantum interference effect, diagonalization of large matrix |
DOI URL: | http://doi.org/10.6345/NTNU202200454 |
論文種類: | 學術論文 |
相關次數: | 點閱:95 下載:11 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
向列態在鐵基超導體中是較為奇特的態,其成因有許多種可能,仍尚無定論。目前普遍認為向列序的來源與自旋有密切的關係,而本研究所要探討的向列序則是種由兩個不同振幅的反鐵磁條紋相互正交穿插所形成的序。文中我們從正方形晶格上的雙軌道平均場哈密頓量出發,其包含了反鐵磁序與超導序的競爭。而後在不同的電子濃度的情形下,找到所對應的純超導態、自旋密度波態與向列態。在計算向列態的局域態密度時我們發現,當加入系統內的雜質沿著磁化強度較弱的方向排列並互相靠近時,雜質間的量子干涉效應會抑制反鐵磁序對局域磁矩的增強效應,使得雜質共振峰的位置向費米能量靠近。最後我們針對對角化大型矩陣的演算法,建立了關於中央處理器與顯示卡平行運算間的基準測試,且對於有限硬體設備提出了混合編成的有效解決方案。
The nematic state is an exotic state in the iron-based superconductors and the origin is still debated, but generally believed that the source of the nematic order is closely related to spin. In this thesis, we consider a nematic order which consists of two different amplitudes of antiferromagnetic stripes. The stripes are orthogonal and interpenetrating each other. We start from the two-orbit mean-field Hamiltonian on a square lattice which contains the competition between the antiferromagnetic order and the superconducting order. Then find the pure superconducting state, the spin density wave state, and the nematic state at the different electron doping levels. We found that when the impurities are aligned with the direction of weaker magnetization in the nematic state and get close to each other, the quantum interference effect between two impurities will suppress the enhancement effect of the local moments by the antiferromagnetic magnetization. The suppressed local moments will push the impurity resonance peak toward the Fermi energy. Finally, we benchmark the CPU and GPU parallel algorithm of diagonalizing large matrix and propose a mixture solution for the limited hardware equipment.
[1] Yunkyu Bang and GR Stewart. Superconducting properties of the s±-wave state: Fe-based superconductors. Journal of Physics: Condensed Matter, 29(12):123003, 2017.
[2] Hong-Yi Chen. Nematicity in electron-doped iron-pnictide superconductors. In On the Properties of Novel Superconductors, page 77. IntechOpen, 2020.
[3] Maria Daghofer, Andrew Nicholson, Adriana Moreo, and Elbio Dagotto. Three orbital model for the iron-based superconductors. Physical Review B, 81(1):014511, 2010.
[4] Elbio Dagotto. Colloquium: The unexpected properties of alkali metal iron selenide superconductors. Reviews of Modern Physics, 85(2):849, 2013.
[5] JC S´eamus Davis and Dung-Hai Lee. Concepts relating magnetic interactions, intertwined electronic orders, and strongly correlated superconductivity. Proceedings of the National Academy of Sciences, 110(44):17623–17630, 2013.
[6] RM Fernandes, AV Chubukov, and J Schmalian. What drives nematic order in iron-based superconductors? Nature physics, 10(2):97–104, 2014.
[7] Horace He. The state of machine learning frameworks in 2019. The Gradient, 2019.
[8] PJ Hirschfeld, MM Korshunov, and II Mazin. Gap symmetry and structure of febased superconductors. Reports on Progress in Physics, 74(12):124508, 2011.
[9] Yoichi Kamihara, Takumi Watanabe, Masahiro Hirano, and Hideo Hosono. Ironbased layered superconductor La[O1−xFx]FeAs (x = 0.05 − 0.12) with Tc = 26K. Journal of the American Chemical Society, 130(11):3296–3297, 2008.
[10] AA Kordyuk. Iron-based superconductors: Magnetism, superconductivity, and electronic structure. Low temperature physics, 38(9):888–899, 2012.
[11] Kazuhiko Kuroki, Seiichiro Onari, Ryotaro Arita, Hidetomo Usui, Yukio Tanaka, Hiroshi Kontani, and Hideo Aoki. Unconventional pairing originating from the disconnected fermi surfaces of superconducting lafeaso 1- x f x. Physical Review Letters, 101(8):087004, 2008.
[12] Patrick A Lee and Xiao-Gang Wen. Spin-triplet p-wave pairing in a three-orbital model for iron pnictide superconductors. Physical review B, 78(14):144517, 2008.
[13] Xingye Lu, JT Park, Rui Zhang, Huiqian Luo, Andriy H Nevidomskyy, Qimiao Si, and Pengcheng Dai. Nematic spin correlations in the tetragonal state of uniaxialstrained bafe2- x ni x as2. Science, 345(6197):657–660, 2014.
[14] Mark D Lumsden and Andrew D Christianson. Magnetism in fe-based superconductors. Journal of Physics: Condensed Matter, 22(20):203203, 2010.
[15] Lihua Pan, Jian Li, Yuan-Yen Tai, Matthias J Graf, Jian-Xin Zhu, and CS Ting. Evolution of quasiparticle states with and without a zn impurity in doped 122 iron pnictides. Physical Review B, 90(13):134501, 2014.
[16] Douglas J Scalapino. A common thread: The pairing interaction for unconventional superconductors. Reviews of Modern Physics, 84(4):1383, 2012.
[17] GR Stewart. Superconductivity in iron compounds. Reviews of Modern Physics, 83(4):1589, 2011.
[18] Yuan-Yen Tai, Jian-Xin Zhu, Matthias J Graf, and CS Ting. Calculated phase diagram of doped bafe2as2 superconductor in a C4 symmetry breaking model. EPL (Europhysics Letters), 103(6):67001, 2013.
[19] Degang Zhang. Nonmagnetic impurity resonances as a signature of sign-reversal pairing in feas-based superconductors. Physical review letters, 103(18):186402, 2009.
[20] Wenliang Zhang, JT Park, Xingye Lu, Yuan Wei, Xiaoyan Ma, Lijie Hao, Pengcheng Dai, Zi Yang Meng, Yi-feng Yang, Huiqian Luo, et al. Effect of nematic order on the low-energy spin fluctuations in detwinned bafe 1.935 ni 0.065 as 2. Physical review letters, 117(22):227003, 2016.
[21] Ren Zhi-An, Lu Wei, Yang Jie, Yi Wei, Shen Xiao-Li, Che Guang-Can, Dong Xiao-Li, Sun Li-Ling, Zhou Fang, Zhao Zhong-Xian, et al. Superconductivity at 55k in ironbased f-doped layered quaternary compound Sm[O1−xFx]F eAs. Chinese Physics Letters, 25(6):2215, 2008.