簡易檢索 / 詳目顯示

研究生: 林家羽
Lin, Chia-Yu
論文名稱: 消渴草粗萃物減緩高脂飲食及STZ誘發第二型糖尿病大鼠肝臟脂肪變性及發炎反應之探討
Effects of Ruellia tuberosa L. on alleviation hepatic steatosis and inflammation in high-fat diet plus streptozotocin induced Type 2 diabetic rats
指導教授: 沈賜川
Shen, Szu-Chuan
吳瑞碧
Wu, Swi-Bea
丁俞文
Ting, Yu-Wen
學位類別: 碩士
Master
系所名稱: 人類發展與家庭學系
Department of Human Development and Family Studies
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 100
中文關鍵詞: 消渴草非酒精性脂肪肝肝臟胰島素阻抗脂肪變性
英文關鍵詞: Ruellia tuberosa L. (RTL), Non-alcoholic fatty liver disease (NAFLD), hepatic insulin resistance, hepatic steatosis
DOI URL: https://doi.org/10.6345/NTNU202203921
論文種類: 學術論文
相關次數: 點閱:253下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

第2型糖尿病(type 2 diabetes mellitus, T2DM)常合併有非酒精性脂肪肝病(Non-alcoholic fatty liver disease, NAFLD)發生。流行病學研究顯示,同時患有T2DM及NAFLD的病患併發糖尿病微血管病變風險高於僅患T2DM之病患。蘆莉草(Ruellia tuberosa L. , RTL)又稱消渴草,是一種廣泛分佈於東亞的多年生草本植物,坊間作為抗糖尿病和抗發炎之民俗草藥使用。本實驗室先前證實RTL具有緩解高血糖、胰島素阻抗及改善肝臟解毒之功能。本研究進一步以高脂飲食與STZ誘導T2DM合併NAFLD動物模式,探討消渴草水萃物及醇萃物對於肝臟胰島素阻抗及NAFLD病程機轉的影響。
西方墨點法結果顯示,消渴草水萃物及醇萃物顯著增加T2DM合併NAFLD大鼠之胰島素受體受質1(IRS-1)蛋白質之表現量(p < 0.05),其中消渴草水萃物亦顯著增加磷酸化蛋白激酶B (p-Akt)/ 蛋白激酶B (Akt)表現(p < 0.05)。肝臟脂肪代謝相關蛋白質分析結果發現,消渴草水萃物顯著減少T2DM合併NAFLD大鼠肝臟SREBP1和乙酰輔酶A羧化酶(ACC)蛋白質之表現量(p < 0.05);而消渴草醇萃物則能顯著降低肝臟SREBP1和脂肪酸合成酶(FAS)蛋白質表現量(p < 0.05)。此外,發現消渴草水萃物及醇萃物可透過降低肝臟發炎路徑IKK而非JNK蛋白質表現來減少促發炎細胞激素如TNF-α,IL-6和IL-1β之含量。
綜合以上結果推測,消渴草可藉由提高肝臟胰島素敏感性減緩T2DM合併NAFLD大鼠胰島素抵抗。消渴草水萃物或醇萃物改善肝臟脂肪變性係透過降低肝臟內生性脂肪合成作用有關的蛋白質表現,而非增加肝臟脂肪β氧化作用。此外,消渴草亦可抑制肝臟發炎路徑蛋白IKK磷酸化及減少促發炎細胞激素分泌,以減輕T2DM合併NAFLD大鼠肝臟非酒精脂肪肝炎的進展。

Non-alcoholic fatty liver disease (NAFLD) occurs commonly in type 2 diabetes mellitus (T2DM). Studies suggest that individuals with both T2DM and NAFLD may increase the risk of microvascular diabetic complica¬tions. Ruellia tuberosa L. (RTL) is a perennial herb widely distributed in Eastern Asia and has been used as anti-diabetes and anti-inflammation fork medicine. We previously reported RTL may alleviate hyperglycemia, insulin resistance and improve detoxification function in animal model. In this study, we investigated the effect of RTL on hepatic insulin signaling pathways, hepatic steatosis and anti-inflammation ability in multiple low-dose streptozotocin (STZ) plus high-fat diet-induced T2DM with NAFLD rats.
The result from western blotting shows that the protein expressions of total insulin receptor substrate-1 (IRS-1) were significant increased by both water and ethanol extract from RTL in T2DM with NAFLD rats (p<0.05). Furthermore, Water extract from RTL were also significant increased protein expressions of phosphor-protein kinase B (p-Akt)/ protein kinase B (Akt) (p<0.05). According to the results of protein expressions related to hepatic fat metabolism. We found that water extract from RTL were significant reduced sterol regulatory element-binding protein 1 (SREBP1) and acetyl-CoA carboxylase (ACC) in T2DM with NAFLD rats (p<0.05). Water extract from RTL were significant reduced SREBP1 and fatty acid synthase (FAS) in T2DM with NAFLD rats (p<0.05). Moreover, pro-inflammatory cytokine such as TNF-α, IL-6 and IL-1β were reduced by both water and ethanol extract from RTL in T2DM with NAFLD rats. Western blot analysis revealed that both water and ethanol extract from RTL decreased the protein expressions of hepatic inflammation pathway IKK, but not JNK in T2DM with NAFLD rats.
Above observation suggests that both water and ethanol RTL extracts significantly alleviate hepatic insulin resistance in T2DM with NAFLD rats via improving hepatic insulin sensitivity. Water or ethanol extract from RTL alleviate hepatic steatosis via down-regulated expression of hepatic de novo lipogenesis-related proteins, rather than increased hepatic lipid β-oxidantion. In addition, RTL may have protective potential on the progression of hepatic inflammation via reducing pro-inflammatory cytokines and alleviating hepatic inflammation signaling protein IKK, but not JNK in T2DM with NAFLD rats.

第一章 前言1 第二章 文獻回顧2 第一節 糖尿病2 一、 糖尿病定義與併發症2 二、 糖尿病分類3 三、 糖尿病診斷7 四、 糖尿病流行病學8 第二節 胰島素阻抗10 一、 胰島素簡介10 二、 胰島素訊息傳遞及作用11 三、 胰島素阻抗簡介12 四、 肥胖與胰島素阻抗形成13 第三節 肝臟16 一、 肝臟解剖組織學16 二、 肝臟生理功能18 三、 肝臟調節脂肪代謝機制20 第四節 非酒精性脂肪肝22 一、 非酒精性脂肪肝定義與流行病學22 二、 非酒精性脂肪肝之病理機轉25 三、 肝臟脂肪變性(hepatic steatosis)26 四、 非酒精性脂肪肝炎(nonalcoholic steatohepatitis, NASH)28 第五節 目前主要治療T2DM合併NAFLD之藥物29 一、 Metformin29 二、 Thiazolinediones (TZDs)29 三、 Glucagon-like peptide-1 receptor agonists (GLP-1RA)30 第六節 消渴草31 一、 消渴草簡介31 二、 消渴草功效之相關研究31 第三章 研究動機與目的及實驗架構33 第四章 實驗材料與方法35 第一節 樣品製備之材料與方法35 一、 實驗材料35 二、 實驗設備35 三、 實驗方法35 第二節 動物實驗之材料與方法37 一、 實驗材料37 二、 實驗設備40 三、 實驗方法41 第五章 結果53 第一節 消渴草粗萃物對T2DM併NAFLD大鼠肝臟胰島素訊息傳遞相關蛋白表現量之影響53 一、 insulin receptor substrate-1(IRS-1)53 二、 Phosphatidylinositol-3-kinase (PI3K)53 三、 Phospho-AKT/ AKT (p-AKT/ AKT)54 第二節 消渴草粗萃物調節T2DM併NAFLD大鼠肝臟脂肪變性之影響58 一、 副睪脂adiponectin蛋白表現58 二、 肝臟adiponectin訊息傳遞路徑相關蛋白表現58 三、 肝臟脂肪合成路徑相關蛋白表現59 四、 肝臟脂肪分解路徑相關蛋白表現60 第三節 消渴草粗萃物對T2DM合併NAFLD大鼠肝臟發炎反應之影響69 一、 肝臟腫瘤壞死因子(Tumor Necrosis Factor-α, TNF-α)69 二、 肝臟介白素-6 (interlukin-6, IL-6)69 三、 肝臟介白素-1 (β interlukin-1β, IL-1β)69 四、 肝臟發炎路徑相關蛋白表現70 第六章 討論76 第一節 消渴草粗萃物對T2DM併NAFLD大鼠肝臟胰島素訊息傳遞相關蛋白表現量之影響76 第二節 消渴草粗萃物調節T2DM併NAFLD大鼠肝臟脂肪變性之影響79 第三節 消渴草粗萃物對T2DM併NAFLD大鼠肝臟發炎反應之影響82 第七章 結論84 第八章 附錄86 第九章 參考文獻93

American Diabetes Association. (2015). Standards of Medical Care in Diabetes - 2015 Diabetes Care, 38,.
Ahmad, A. R., Munim, A., & Elya, B. (2012). Study of antioxidant activity with reduction of dpph radical and xanthine oxidase inhibitor of the extract of ruellia tuberosa Linn leaf. International Research Journal of Pharmacy, 3(11), 66-70.
Alam, M. A., Subhan, N., Awal, M. A., Alam, M. S., Sarder, M., Nahar, L., & Sarker, S. D. (2009). Antinociceptive and anti-inflammatory properties ofRuellia tuberosa. Pharmaceutical Biology, 47(3), 209-214. doi:10.1080/13880200802434575
Alessi, D. R., & Downes, C. P. (1998). The role of PI 3-kinase in insulin action. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, 1436(1-2), 151-164. doi:10.1016/S0005-2760(98)00133-7
Angulo, P., Keach, J. C., Batts, K. P., & Lindor, K. D. (1999). Independent Predictors of Liver Fibrosis in Patients With Nonalcoholic Steatohepatitis. Hepatology, 30(6), 1356-62.
Anstee, Q. M., Targher, G., & Day, C. P. (2013). Progression of NAFLD to diabetes mellitus, cardiovascular disease or cirrhosis. Nat Rev Gastroenterol Hepatol, 10(6), 330-344. doi:10.1038/nrgastro.2013.41
Arkan, M.C., Hevener, A.L., Greten, F.R., Maeda, S., Li, Z.W., Long, J.M., Wynshaw-Boris, A., Poli, G., Olefsky, J., Karin, M. (2005). IKK-β links inflammation to obesity-induced insulin resistance. Nature Medicine., 11(2), 191-198.
Begriche, K., Igoudjil, A., Pessayre, D., Fromenty, B. (2006). Mitochondrial dysfunction in NASH: causes, consequences and possible means to prevent it. Mitochondrion. 6(1): 1-28.
Belfort, R., Harrison, SA., Brown, K., Darland, C., Finch, J., Hardies, J., Balas, B., Gastaldelli, A., Tio, F., Pulcini, J., Berria, R., Ma, JZ., Dwivedi, S., Havranek, R., Fincke, C., DeFronzo, R., Bannayan, GA., Schenker, S., Cusi, K. A. (2006). A Placebo-Controlled Trial of Pioglitazone in Subjects with Nonalcoholic Steatohepatitis. The New England Journal of Medicine, 355, 2297-2307.
Boden, G., She, P., Mozzoli, M., Cheung, P., Gumireddy, K., Reddy, P., Xiang, X., Luo,Z., Ruderman, N. (2005). Free Fatty Acids Produce Insulin Resistance and Activate the Proinflammatory Nuclear Factor-B Pathway in Rat Liver. DIABETES, 54.
Brown, M., & Goldstein, J. (2009). Cholesterol feedback: from Schoenheimer's bottle to Scap's MELADL. The Journal of Lipid Research, 50, S15-27. doi:10.1194/jlr.R800054-JLR200.
Carlsson, C., Borg, L. A., & Welsh, N. (1999). Sodium palmitate induces partial mitochondrial uncoupling and reactive oxygen species in rat pancreatic islets in vitro. Endocrinology, 140, 3422–3428.
Chalasani, N., Younossi, Z., Lavine, J. E., Diehl, A. M., Brunt, E. M., Cusi, K., Charlton, M., Sanyal, A. J. (2012). The diagnosis and management of non-alcoholic fatty liver disease: practice Guideline by the American Association for the Study of Liver Diseases, American College of Gastroenterology, and the American Gastroenterological Association. Hepatology, 55(6), 2005-2023. doi:10.1002/hep.25762
Chen, F. A., Wu, A. B., Shieh, P., Kuo, D. H., & Hsieh, C. Y. (2006). Evaluation of the antioxidant activity of Ruellia tuberosa. Food Chemistry, 94(1), 14-18.
Chiu, N.Y. and K.H. Chang. (1998). The Illustrated Medicinal Plants of Taiwan, 5, SMC Publishing Inc., Taipei, Taiwan, Republic of China.
Cohen, P., Alessi, D. R., & Cross, D. A. E. (1997). PDK1, one of the missing links in insulin signal transduction?1. FEBS Letters, 410(1), 3-10. doi:10.1016/s0014-5793(97)00490-0
Coleman, R., & Lee, D. (2004). Enzymes of triacylglycerol synthesis and their regulation. Progress in Lipid Research, 43(2), 134-176. doi:Enzymes of triacylglycerol synthesis and their regulation.
David, A., & Sacks, M. (2014). Diabetes & Pregnancy: A Guide to a Healthy Pregnancy for Women with Type 1, Type 2, or Gestational Diabetes.
Day, C. P., & James, O. F. W. (1998). Steatohepatitis: A tale of two “hits”? Gastroenterology, 114(4), 842-845. doi:http://dx.doi.org/10.1016/S0016-5085(98)70599-2
Dixon, J. B., Bhathal, P. S., & O'Brien, P. E. (2001). Nonalcoholic Fatty Liver Disease: Predictors of Nonalcoholic Steatohepatitis and Liver Fibrosis in the Severely Obese. Gastroenterology, 121(1), 91-100. doi:10.1053/gast.2001.25540
Dowman, J. K., Tomlinson, J. W., & Newsome, P. N. (2010). Pathogenesis of non-alcoholic fatty liver disease. An International Journal of Medicine, 103(2), 71-83. doi:10.1093/qjmed/hcp158
Gan, K. X., Wang, C., Chen, J. H., Zhu, C. J., & Song, G. Y. (2013). Mitofusin-2 ameliorates high-fat diet-induced insulin resistance in liver of rats. World Journal of Gastroenterology, 19(10), 1572-1581. doi:10.3748/wjg.v19.i10.1572
Gastaldelli, A., Natali, A., Vettor, R., & Corradini, S. G. (2010). Insulin resistance, adipose depots and gut: interactions and pathological implications. Dig Liver Dis, 42(5), 310-319. doi:10.1016/j.dld.2010.01.013
Ge, Z., Zhang, P., Hong, T., Tang, S., Meng, R., Bi, Y., & Zhu, D. (2015). Erythropoietin alleviates hepatic insulin resistance via PPARgamma-dependent AKT activation. Scientific Reports, 5, 17878. doi:10.1038/srep17878
Gibbons, G., Wiggins, D., Brown, A., & Hebbachi, A. (2004). Synthesis and function of hepatic very-low-density lipoprotein.Biochem. Biochemical Society Transactions, 32(1), 59-64. doi:10.1042/bst0320059
Gideon, R., Hajer, Yolanda, v. d. G., Jobien, K., Olijhoek, Michael, E., Frank, L.J., Visseren, F.L. (2007). Low plasma levels of adiponectin are associated with low risk for future cardiovascular events in patients with clinical evident vascular disease. American Heart Journal, 154(4), 750.e751–750.e757. doi:10.1016/j.ahj.2007.07.013
Giulio, M., Mara, B., Giampaolo, B., Sara, T., Elisabetta, B., Marco, L., Arthur, J. M., Stefania, N. Gabriele, F., Nazario, M. (2001). Nonalcoholic Fatty Liver Disease-A Feature of the Metabolic Syndrome. DIABETES, 50(8), 1844-1850.
Gupta, N. A., Mells, J., Dunham, R. M., Grakoui, A., Handy, J., Saxena, N. K., & Anania, F. A. (2010). Glucagon-like peptide-1 receptor is present on human hepatocytes and has a direct role in decreasing hepatic steatosis in vitro by modulating elements of the insulin signaling pathway. Hepatology, 51(5), 1584-1592. doi:10.1002/hep.23569
Holland, W. L., Adams, A. C., Brozinick, J. T., Bui, H. H., Miyauchi, Y., Kusminski, C. M., Bauer, S. M., Wade, M., Singhal, E., Cheng, C. C., Volk, K., Kuo, M. S., Gordillo, R., Kharitonenkov, A., Scherer, P. E. (2013). An FGF21-adiponectin-ceramide axis controls energy expenditure and insulin action in mice. Cell Metabolism, 17(5), 790-797. doi:10.1016/j.cmet.2013.03.019
IDF. http://www.idf.org/.
Inzucchi, S. E., Bergenstal, R., Buse, J., Diamant, M., Ferrannini, E., Nauck, M., Peters, AL., Tsapas, A., Wender, R., Matthews, D. (2015). Management of Hyperglycemia in Type 2 Diabetes, 2015: A PatientCentered Approach Update to a Position Statement of the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care, 38, 140-149. doi: 10.2337/dc14-2441
Jones, A. G., & Hattersley, A. T. (2013). The clinical utility of C‐peptide measurement in the care of patients with diabetes. Diabetic Medicine., 30(7), 803-817. doi:10.1111/dme.12159.
Kadowaki, T., Yamauchi, T., & Kubota, N. (2008). The physiological and pathophysiological role of adiponectin and adiponectin receptors in the peripheral tissues and CNS. FEBS Lett, 582(1), 74-80. doi:10.1016/j.febslet.2007.11.070
Kahn, B. B., & Flier, J. S. (2000). Obesity and insulin resistance. The Journal of Clinical Investigation, 106(4), 473-481.
Kanda, H., Tateya, S., Tamori, Y., Kotani, K., Hiasa, K., Kitazawa, R., Kitazawa, S., Miyachi, H., Maeda, S., Egashira, K., Kasuga, M. (2006). MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. The Journal of Clinical Investigation., 116(6), 1494-1505. doi:10.1172/JCI26498.
Kanuri, G., & Bergheim, I. (2013). In vitro and in vivo models of non-alcoholic fatty liver disease (NAFLD). International Journal of Molecular Sciences, 14(6), 11963-11980. doi:10.3390/ijms140611963
Kathirvel, E., Morgan, K., French, S., & Morgan, T. (2009). Overexpression of liver-specific cytochrome P4502E1 impairs hepatic insulin signaling in a transgenic mouse model of nonalcoholic fatty liver disease. European Journal of Gastroenterology & Hepatology, 21, 973-983.
Kershaw, E., & Flier, J. (2004). Adipose tissue as an endocrine organ. The Journal of Clinical Endocrinology & Metabolism, 89(6), 2548-2556. doi:http://dx.doi.org/10.1210/jc.2004-0395#sthash.Kd0vosVk.dpuf
Kohjima, M., Higuchi, N., Kato, M., Kotoh, K., Yoshimoto, T., Fujino, T., Yada, M., Yada, R., Harada, N., Enjoji, M., Takayanagi, R., Nakamuta, M. (2008). SREBP-1c, regulated by the insulin and AMPK signaling pathways, plays a role in nonalcoholic fatty liver disease. International Journal of Molecular Medicine, 21(4), 507-511.
Krishna, C. B., Bavindra, B. S., Ramesh, C. A. R., Jayasree, V., & Diana, V. A. (2012). Hypolipidemic and antioxidant activity of Ruellia tuberosa Linn. International Journal of Pharma and Biosciences., 2(3), 63-72.
Lavallard, V. J., & Gual, P. (2014). Autophagy and non-alcoholic fatty liver disease. BioMed Research International, 2014, 120179. doi:10.1155/2014/120179
Lebovitz, H. E. ( 2001). Insulin resistance: definition and consequences. Experimental and Clinical Endocrinology & Diabetes, 109(2), S135-S148. doi:10.1055/s-2001-18576
Lee, L., Horowitz, J., & Frenneaux, M. (2004). Metabolic manipulation in ischaemic heart disease, a novel approach to treatment. European Heart Journal, 25(8), 634-641. doi:10.1016/j.ehj.2004.02.018
Li, Y., Soos, T. J., Li, X., Wu, J., Degennaro, M., Sun, X., Littman, D. R., Birnbaum, M. J., Polakiewicz, R. D. (2004). Protein kinase C Theta inhibits insulin signaling by phosphorylating IRS1 at Ser(1101). The Journal of Biological Chemistry, 279(44), 45304-45307. doi:10.1074/jbc.C400186200
Lonardo, A., Sookoian, S., Pirola, C. J., & Targher, G. (2016). Non-alcoholic fatty liver disease and risk of cardiovascular disease. Metabolism, 65(8), 1136-1150. doi:10.1016/j.metabol.2015.09.017
Lonçar, D., Afzelius B.A., Cannon B. (1988). Epididymal white adipose tissue after cold stress in rats I. Nonmitochondrial changes. Journal of Ultrastructure and Molecular Structure Research, 101(2-3), 109-122. doi:10.1016/0889-1605(88)90001-8
Loomba, R., Lutchman, G., Kleiner, D. E., Ricks, M., Feld, J. J., Borg, B. B., Modi, A., Nagabhyru, P., Sumner, A. E., Liang, T. J., Hoofnagle, J. H. (2009). Clinical trial: pilot study of metformin for the treatment of non-alcoholic steatohepatitis. Alimentary Pharmacology & Therapeutics, 29(2), 172-182. doi:10.1111/j.1365-2036.2008.03869.x
Loomba, R., & Sanyal, A. J. (2013). The global NAFLD epidemic. Nature Reviews Gastroenterology & Hepatology, 10(11), 686-690. doi:10.1038/nrgastro.2013.171
Ma, H., You, G. P., Zhang, X. P., Yang, X. J., Lu, H. D., Huang, Y. L., & Zhang, W. Q. (2014). A novel role of globular adiponectin in treatment with HFD/STZ induced T2DM combined with NAFLD rats. Scientific World Journal, 2014, 230835. doi:10.1155/2014/230835
Manikandan, A., & Victor, A. D. (2013). Effect of 50% Hydro‑Ethanolic Leaf Extracts of Ruellia Tuberosa L. and Dipteracanthus Patulus (Jacq.) on Lipid Profile in Alloxan Induced Diabetic Rats. International Journal of Preventive Medicine, 4(7), 744-747.
Musso, G., Gambino, R., & Cassader, M. (2009). Recent insights into hepatic lipid metabolism in non-alcoholic fatty liver disease (NAFLD). Progress in Lipid Research, 48(1), 1-26. doi:10.1016/j.plipres.2008.08.001
Nagle, C. A., Klett, E. L., & Coleman, R. A. (2009). Hepatic triacylglycerol accumulation and insulin resistance. The Journal of Lipid Research, 50 Suppl, S74-79. doi:10.1194/jlr.R800053-JLR200
Nigel, T. (2013). Type 2 Diabetes-Chapter 4 Mitochondrial Metabolism and Insulin Action (M. Kazuko Ed.): InTech. doi: 10.5772/56449
Pérez-Carreras, M., Del Hoyo, P., Martín, M. A., Rubio, J. C., Martín, A., Castellano, G., Colina, F., Arenas, J., Solis-Herruzo, J. A. (2003). Defective hepatic mitochondrial respiratory chain in patients with nonalcoholic steatohepatitis. Hepatology, 38(4), 999-1007.
Paschos, P., & Paletas, K. (2009). Non alcoholic fatty liver disease and metabolic syndrome. Hippokratia, 13(1), 9-19.
Petersen, K. F., & Shulman, G. I. (2006). Etiology of insulin resistance. American Journal of Medicine, 119(1), S10-S16.
Portillo-Sanchez, P., & Cusi, K. (2016). Treatment of Nonalcoholic Fatty Liver Disease (NAFLD) in patients with Type 2 Diabetes Mellitus. Clinical Diabetes and Endocrinology, 2(1). doi:10.1186/s40842-016-0027-7
Portillo, P., Yavuz, S., Bril, F., & Cusi, K. (2014). Role of Insulin Resistance and Diabetes in the Pathogenesis and Treatment of Nonalcoholic Fatty Liver Disease. Current Hepatology Reports, 13(2), 159-170. doi:10.1007/s11901-014-0229-3
Qatanani, M., & Lazar, M. A. (2007). Mechanisms of obesity-associated insulin resistance: many choices on the menu. Genes & Development, 21(12), 1443-1455. doi:10.1101/gad.1550907
Rajan, M., Kishor Kumar, V., Satheesh Kumar, P., Swathi, K. R., & Haritha, S. (2012). Antidiabetic, antihyperlipidaemic and hepatoprotective activity of methanolic extract of Ruellia tuberosa Linn leaves in normal and alloxan induced diabetic rats. Journal of Chemical and Pharmaceutical Research, 4(6), 2860-2868.
Rao, G. (2001). Insulin resistance syndrome. American Family Physician., 63(6), 1159-1166.
Ratna Wulan, D., Priyo Utomo, E., & Mahdi, C. (2015). Antidiabetic Activity of Ruellia tuberosa L., Role of alpha-Amylase Inhibitor: In Silico, In Vitro, and In Vivo Approaches. Biochemistry Research International, 2015, 349261. doi:10.1155/2015/349261
Ratziu, V., Bellentani, S., Cortez-Pinto, H., Day, C., & Marchesini, G. (2010). A position statement on NAFLD/NASH based on the EASL 2009 special conference. Journal of Hepatology, 53(2), 372-384. doi:10.1016/j.jhep.2010.04.008
Ratziu, V., Caldwell, S., & Neuschwander-Tetri, B. A. (2010). Therapeutic trials in nonalcoholic steatohepatitis: insulin sensitizers and related methodological issues. Hepatology, 52(6), 2206-2215. doi:10.1002/hep.24042
Ratziu, V., Bellentani, S., Cortez-Pinto, H., Day, C., & Marchesini, G. (2010). A position statement on NAFLD/NASH based on the EASL 2009 special conference. Journal of Hepatology, 53(2), 372-384. doi:10.1016/j.jhep.2010.04.008
Reaven, G. (1995). Pathophysiology of insulin resistance in human disease. Physiological Reviews, 75(3), 473-486.
Ryysy, L., Häkkinen, A. M., Goto, T., Vehkavaara, S., Westerbacka, J., Halavaara, J., & Yki-Järvinen, H. (2000). Hepatic fat content and insulin action on free fatty acids and glucose metabolism rather than insulin absorption are associated with insulin requirements during insulin therapy in type 2 diabetic patients. Diabetes, 49(5), 749-758. doi:10.2337/diabetes.49.5.749
Shi, H., Kokoeva, M. V., Inouye, K., Tzameli, I., Yin, H., & Flier, J. S. (2006). TLR4 links innate immunity and fatty acid-induced insulin resistance. The Journal of Clinical Investigation, 116(11), 3015-3025. doi:10.1172/JCI28898.
Shimomura, I., Bashmakov, Y., Ikemoto, S., Horton, J., Brown, M., & Goldstein, J. (1999). Insulin selectively increases SREBP-1c mRNA in the livers of rats with streptozotocin-induced diabetes. Proceedings of the National Academy of Sciences, 96(24), 13656-13661.
Shoelson, S. E., Lee, J., & Yuan, M. (2003). Inflammation and the IKK/IkB/NF-kB axis in obesity- and diet-induced insulin resistance. International Journal of Obesity, 27(3), S49-S52.
Smith, B., & Adams, L. (2011). Non-alcoholic fatty liver disease. Critical Reviews in Clinical Laboratory Sciences, 48(3), 97-113. doi:10.3109/10408363.2011.596521.
Soccio, R. E., Chen, E. R., & Lazar, M. A. (2014). Thiazolidinediones and the promise of insulin sensitization in type 2 diabetes. Cell Metabolism, 20(4), 573-591. doi:10.1016/j.cmet.2014.08.005
Suseela, L., & Prema., S. (2007). Pharmacognostic study on Ruellia tuberosa. Journal of Medicinal and Aromatic Plant Sciences, 29, 117–122.
Svegliati-Baroni, G., Saccomanno, S., Rychlicki, C., Agostinelli, L., De Minicis, S., Candelaresi, C., Faraci, G., Pacetti, D., Vivarelli, M., Nicolini, D., Garelli, P., Casini, A., Manco, M., Mingrone, G., Risaliti, A., Frega, G. N., Benedetti, A., Gastaldelli, A. (2011). Glucagon-like peptide-1 receptor activation stimulates hepatic lipid oxidation and restores hepatic signalling alteration induced by a high-fat diet in nonalcoholic steatohepatitis. Liver International, 31(9), 1285-1297. doi:10.1111/j.1478-3231.2011.02462.x
Tsuchida, A., Yamauchi, T., Ito, Y., Hada, Y., Maki, T., Takekawa, S., Kamon, J., Kobayashi, M., Suzuki, R., Hara, K., Kubota, N., Terauchi, Y., Froguel, P., Nakae, J., Kasuga, M., Accili, D., Tobe, K., Ueki, K., Nagai, R., Kadowaki, T. (2004). Insulin/Foxo1 pathway regulates expression levels of adiponectin receptors and adiponectin sensitivity. The Journal of Biological Chemistry, 279(29), 30817-30822. doi:10.1074/jbc.M402367200
Wang, Z. Q., Zhang, X. H., Yu, Y., Tipton, R. C., Raskin, I., Ribnicky, D., Johnson, W., Cefalu, W. T. (2013). Artemisia scoparia extract attenuates non-alcoholic fatty liver disease in diet-induced obesity mice by enhancing hepatic insulin and AMPK signaling independently of FGF21 pathway. Metabolism, 62(9), 1239-1249. doi:10.1016/j.metabol.2013.03.004
Wang, Y., Zhou, M., Lam, K. S. L., & Xu, A. (2009). Protective roles of adiponectin in obesityrelated fatty liver diseases: mechanisms and therapeutic implications. Archives of Endocrinology and Metabolism, 53(2), 201-212.
Weltman, M., Farrell, G., & Liddle, C. (1996). Increased hepatocyte CYP2E1 expression in a rat nutritional model of hepatic steatosis with inflammation. Gastroenterology, 111, 1645-1653.
White, M. F. (2003). Insulin Signaling in Health and Disease. Science, 302(5651), 1710-1711. doi: 10.1126/science.1092952
WHO. http://www.who.int/en/.
Yau, H., Rivera, K., Lomonaco, R., & Cusi, K. (2013). The future of thiazolidinedione therapy in the management of type 2 diabetes mellitus. Current Diabetes Reports. 13(3), 329-341. doi:10.1007/s11892-013-0378-8
Yehiel, Z. (2001). Insulin resistance: a phosphorylation-based uncoupling of insulin signaling. Trends in Cell Biology, 11(11), 437-441.
Yosten, G. L., & Kolar, G. R. (2015). The Physiology of Proinsulin C-Peptide: Unanswered Questions and a Proposed Model. Physiology (Bethesda), 30(4), 327-332. doi:10.1152/physiol.00008.2015
Zhang, M., Feng, L., Gu, J., Ma, L., Qin, D., Wu, C., & Jia, X. (2014). The attenuation of Moutan Cortex on oxidative stress for renal injury in AGEs-induced mesangial cell dysfunction and streptozotocin-induced diabetic nephropathy rats. Oxidative Medicine and Cellular Longevity. (463815). doi:10.1155/2014/463815
Zhou S.F., Chan E., Zhou Z.W., Xue C.C., Lai X. & Duan W. (2009). Insights into the structure, function, and regulation of human cytochrome P450 1A2. Current Drug Metabolism. 10, 713–729.
陳柔安。(2015)。消渴草粗萃物對高脂飲食及STZ誘發高血糖大鼠胰島素阻抗及肝臟解毒功能之影響。國立臺灣師範大學人類發展與家庭學系碩士論文。
許世昌,陳淑瑩,許麗敏,吳政學,陳瑩玲,鄭麗菁,陳姮蓉,林淑玟,王中林。(2013)。解剖生理學。台灣。永大書局有限公司。
衛生福利部統計處。 (2015)。 104年國人10大死因。 http://www.mohw.gov.tw/news/531349778.
譚健民,廖桂聲。(2009)。中西醫會診-肝炎。台灣。書泉出版。

下載圖示
QR CODE