簡易檢索 / 詳目顯示

研究生: 吳家宇
Wu, Chia-Yu
論文名稱: 微型交流磁導儀之開發與特性研究
The Development and Characteristic of Miniature Alternative Current Susceptometer
指導教授: 廖書賢
Liao, Shu-Hsien
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2017
畢業學年度: 106
語文別: 中文
論文頁數: 50
中文關鍵詞: 交流磁化率磁流體微流道
英文關鍵詞: AC susceptibility, magnetic nanoparticle, microfluidic chip
DOI URL: https://doi.org/10.6345/NTNU202201910
論文種類: 學術論文
相關次數: 點閱:213下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 交流磁導儀是利用交流磁場激發樣品,並檢測樣品的交流磁矩
    大小,進而得知樣品交流磁化率的一種磁檢測儀器,目前已被廣泛
    應用於磁性樣品的特性檢測。本系統之優化與挑戰在於提高磁場感
    測靈敏度,降低外在環境雜訊干擾之問題。
    本研究旨在開發了微型的交流磁導儀,將現今的交流磁導儀做微 型化改善設計,縮短了接收線圈與量測樣品間的距離,提高系統磁場 感測靈敏度,應用於微量液態磁性樣品檢測有非常好的表現。本系統 由梯度式接收線圈,搭配激發線圈、訊號產生器及鎖相放大器所組成。 利用微型激發線圈產生交流磁化磁場,使用兩個獨立的微型接收線圈 接收樣品的交流磁訊號,接收線圈以梯度形式設計,用以降低環境雜 訊干擾,並使用微流道來控制樣品進出。本研究開發之微型交流磁導 儀,可以量測一倍頻與三倍頻訊號,可量測到最低含鐵量約為 3.31 ng。

    In this study, an AC susceptometer was designed for detecting the magnetic moment of different particle sizes of magnetic nanoparticle. The property of magnetic nanoparticles was characterized by observing the measurement results. The synthesis of magnetic samples is difficult. Therefore, we developed a miniature ac susceptometer to reduce the demand of samples.
    This ac susceptometer system is consisted of an excitation coil and a pair of gradient receiving coils. When an alternating current is passing through the excitation coil, AC magnetic field is generated and the magnetic signal from samples is detected by gradient coils. The interference of environmental noise would be decreased by using gradient receiving coils. In order to manipulate the flow of sample, a microfluidic chip and injector were employed to adjust the position of magnetic fluid. The detecting volume of our ac susceptometer is about 6 μL. Form the low concentration experiment, the ac susceptometer reaches a high detection sensitivity of iron content of 3.31 ng. The miniature AC susceptometer will be applied for the biomedical detection with biofunctionalized magnetic particles in the near future.

    謝誌 II 摘要 III Abstract IV 目錄 V 圖表目錄 VII 第一章 緒論 1 第二章 實驗原理 3 2-1 磁性奈米粒子 3 2-2 磁粒子磁場與磁化強度 5 2-3 交流磁化率 7 2-4 諧波訊號 8 2-5 鬆弛時間(Relaxation time) 9 2-6 微流道晶片 11 第三章 實驗架構 12 3-1 激發磁場產生模組 12 3-2 接收線圈組 14 3-3 微流道晶片 15 3-4 整體實驗架構 16 第四章 實驗結果與數據討論 17 4-1 磁訊號校正 17 4-2 最小樣品量量測 20 4-3 一倍頻訊號與三倍頻訊號實際測試 23 4-4 系統靈敏度量測 41 4-5 三倍頻訊號與VSM比較 44 第五章 結論 46 參考文獻 48

    1. S. H. Chung,A. Hoffmann, andS. D. Bader C. Liu,B. Kay,L. Makowski, andL. Chen Biological sensors based on Brownian relaxation of magnetic nanoparticles, Appl. Phys. Lett. 85, 2971 (2004).
    2. 楊謝樂,磁性奈米粒子於生物醫學上之應用,物理雙月刊(廿八卷 四期) (2006).
    3. 陳泂翰,磁流體交流磁化率隨頻率變化之研究,國立台灣師範大 學光電科技研究所碩士論文(2009).
    4. 王之昊,郎之萬測磁儀,國立中正大學物理研究所碩士論文(2013).
    5. Murase, K., Konishi, T., Takeuchi, Y. et al. Radiol Phys Technol (2013).
    6. L. Néel, Ann. Geophys., 5, 99(1949).
    7. S. H. Chung, A. Hoffmann, and S. D. Bader C. Liu, B. Kay, L. Makowski, andL. Chen Biological sensors based on Brownian relaxation of magnetic nanoparticles, Appl. Phys. Lett. 85, 2971 (2004).
    8. Chih-Hui Yang, Chih-Yu Wang*, Keng-Shiang Huang, Chao-Pin Kung, Yi-Ching Chang, Jei-Fu Shaw, "Microfluidic one-step synthesis of Fe3O4-chitosan composite particles and their applications", International Journal of Pharmaceutics, vol. 463, no. 2, pp. 155-160, (2013).
    9. Chih-Yu Wang, Shu-Chen Chang, Keng-Shiang Huang*, Chih-Hui Yang, "The Application of Optical Technology in Microfluidic systems", CURRENT PROTEOMICS, vol. 11, no. 2, pp. 80-85, (2014).
    10. Yung-Sheng Lin, Ming-Yuan-Lee, Chih-Hui Yang*, Keng-Shiang Huang*, "Biomedical Devices for Pathogen Detection Using Microfluidic Chips", CURRENT PROTEOMICS, vol. 11, no. 2, pp. 116-120 (2014).
    11. P.J. Fisher, M.J. Springett, A.B. Dietz, P.A. Bulur, and S. Vuk-Pavlovic, J. Immunological Methods, 262, 95 (2002).
    12. W.Q. Jiang, H.C. Yang, S.Y. Yang, H.E. Horng, J.C. Hung, Y.C. Chen, and Chin-Yih Hong, J. Magn. Magn. Mater., 283, 210 (2004).
    13. H.E. Horng, S. Y. Yang, Y. W. Huang, W. Q. Jiang, C.-Y. Hong, and H.C. Yang, IEEE Trans. Appl. Supercond., 15, 668 (2005).
    14. H.E. Horng, Chin-Yih Hong, S.Y. Yang, H.C. Yang, S.H. Liao, C.M. Liu, and C.C. Wu, J. Korean Phys. Soc., 48, 999 (2006).
    15. R. Kötitz, W. Weitschies, L. Trahms, W. Brewer and W. Semmler, J. of Magn. and Magn. Mater., 194 ,65 (1999).
    16. P. Debye, Polar Molecules, Chemical Catalog Company, New York, (1929).
    17. Helen W. Davies and J. Patrick Llewellyn, J. Phys. D, 12, 1357(1979).
    18. Nihad A. Yusuf, Jpn. J. Appl. Phys., 27, 2418 (1988).
    19. S. Neveu-Prin, F.A. Tourinho, J.-C. Bacri, and R. Perzynski, Colloids and Surf. A, 80, 1 (1993).
    20.Paul M. Ridker, Julie E Buring, Nancy R.Cook, Nader Rifai, Circulation 107:391-397 (2003).
    21. Pradhan AD,Manson JE,Rifai N, JAMA 286:327-334. (2001).
    22. Ridker PM,Hennekens CH,Buring JE, N Engl J Med. 342:836-843(2000).
    23. A. Thomas, A. George, R. Wayne Alexander, Jeffry L.Anderson, Circulation 107:499-511. (2003).
    24. Yi Zhang, Hayaki Murata, Yoshimi Hatsukade, and Saburo Tanaka Review of Scientific Instruments 84, 094702 (2013).
    25. Chih-Hui Yang, Lung-Shuo Wang, Szu-Yu Chen, Mao-Chen Huang, Ya- Hua Li, Yun-Chul Lin, Pei-Fan Chen, Jei-Fu Shaw*, Keng-Shiang Huang*, "Microfluidic assisted synthesis of silver nanoparticle–chitosan composite microparticles for antibacterial applications",International Journal of Pharmaceutics, vol. 0, no. 0, pp. pii: S0378-5173(16)3, (2016).
    26. Chih-Hui Yang, Yung-Sheng Lin, Ming-Cheng Shih, Han-Chen Chiu, Keng-Shiang Huang*, "Droplet-based Microfluidic Technology Applications in Polymer Science", CURRENT PROTEOMICS, vol. 11, no.2, pp. 92-97, (2014).
    27. 江禎立,氧化鐵-金奈米複合粒子之製備及其在腫瘤溫熱法之應用,南台科技大學(2011).

    無法下載圖示 本全文未授權公開
    QR CODE