研究生: |
李旭昇 |
---|---|
論文名稱: |
模擬與研究近場光碟的循軌機制 Study of tracking on near-field optical disk |
指導教授: |
劉威志
Liu, Wei-Chih |
學位類別: |
碩士 Master |
系所名稱: |
光電工程研究所 Graduate Institute of Electro-Optical Engineering |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 中文 |
論文頁數: | 105 |
中文關鍵詞: | 近場光碟 、循軌 、循軌錯誤訊號 、循軌能力訊號 、傅立葉光學 、繞射極限 |
論文種類: | 學術論文 |
相關次數: | 點閱:216 下載:1 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要在說明三維近場光碟(near-field optical disk)的讀取與循軌特性的分析。文中一開始先介紹本研究的基本理論,接者說明模擬相變光碟的servo特性,包括錯誤循軌訊號(tracking error signal)和錯誤聚焦訊號(focus error signal)。再來就是本研究的重點,首先分別討論隨機奈米結構層(random nanostructures)對近場光碟讀取訊號解析度的影響。依照隨機奈米結構層中粒子密度和粒子大小的不同,分為6個情況來討論對於近場光碟讀取訊號解析度的影響,粒子的直徑越小,讀取訊號的解析度越好。最後討論近場光碟的循軌(tracking)特性並且探討不同隨機奈米結構層中粒子密度和粒子大小對近場光碟循軌的影響。
The main purpose of this thesis is to analysis the characteristics of readout and tracking on three-dimension near-field optical disk. First, we introduce the fundamental theory of our research, and to simulate the characteristics of servo of phase change optical disk, it was included the tracking error signal and focus error signal. And then we discuss the influence of random nanostructures for the resolution capability of readout signal of near-field optical disks. In accordance with the difference of density and size of particle on nanostructures, the smaller the diameter of the particle, the resolution of readout signal is better. Finally, we discuss the characteristics of tracking of near-field optical disks, and to study of the influence of tracking by the difference of the density and size of particles of nanostructures.
第一章
[1]M.Born,E.Wolf, Principles of Optics,7th edition(Pergamon Press, Oxford, New York,1975).
[2]E.H.Synge,”An application of piezoelectricity to
microscopy”,Philos.Mag.6,256(1928).
[3]E.A.Ash and G.Nichols,”Super-resolution aperture scanning microscope”,Nature 237,512(1972).
[4]E.Wolf and M.Nieto-Vesperinas,”Analyticity of the angular spectrum amplitude of scattered fields and some of its consequences”,J.Opt.Soc.AM.A 2,886(1985).
[5]J.M.Vigoureux and D.Courjon,”Detection of nonradiative fields in light of the Heisenberg uncertainty principle and Rayleigh criterion”,Appl.Opt.31,3170(1992).
[6] J.M.Vigoureux, F.Depasse and D.Courjon,”Superresolution of near-field optical microscopy defined from properties of confined electromagnetic waves”,Appl.Opt.31,3036(1992).
[7]K.Yasuda, M.Ono, K.Aratani, A.Fukumoto and M.Kaneko, ”Premastered optical disk by superresolution ”
,Jpn.J.Appl.Phys.32,5210(1993).
[8]H.Awano, S.Ohnuki, H.Shirai and N.Ohta.”Magnetic domain expansion readout for amplification of an ultra high density
magneto-optical recording signal”, Appl.Phys.Lett. 69,4257(1996).
[9]E.Betzig, J.K.Trautman, R.Wolfe, E.M.Gyorgy and P.L.Finn,” Near-field magneto-optics and high density data storage”, Appl.Phys.Lett.61,142(1992).
[10]J.Tominaga, T.Nakano and N.Atoda,”Super-resolution structure for optical data storage by near-field optics”,Proc.SPIE 3467,282(1998).
[11]J.Tominaga, T.Nakano and N.Atoda,”An approach for recording and readout beyond the diffraction limit with an Sb film ”,Appl.Phys.Lett.73,2078(1998).
[12]J.Tominaga, H.Fuji, A.Sato, T.Nakano, T.Fukaya and N.Atoda,”The near-field super-resolution properties of an antimony thin film”,Jpn.J.Appl.Phys.37,1323(1998).
[13]T.Nakaco, A.Sato, H.Fuji, J.Tominaha and N.Atoda,”Transmitted signal detection of optical disks with a superresolution near-field structure”, Appl.Phys.Lett. 75,151(1999).
[14]H.Fuji, J.Tominaga, L.Men, T.Nakano, H.Katayama and N.Atoda,”A near-field recording and readout technology using a metallic probe in an optical disk”,Jpn.J.Appl.Phys 39,980(2000).
[15]T.C.Chu, W.-C.Liu and D.P.Tsai,”Enhanced resolution induced by random silver nanoparticles in near-field optical disks”,Opt.Commun.246,561(2005).
[16]吳民耀、劉威志,”表面電漿子理論與模擬”, 物理雙月刊,廿八卷二期,486頁(2006).
[17]W.-C.Liu, C.-Y.Win, K.-H.Chen, W.C.Lin, and D.P.Tsai,”Near-field images of the AgOX-type super-resolution near-field structure”,Appl.Phys.Lett.78,685(2001).
[18]W.-C.Liu and D.P.Tsai,”Nomlinear near-field optical effects of the AgOX-type super-resolution near-field structurel”,Jpn.J.Appl.Phys.42,Part1,1031(2003).
[19]W.-C.Liu, M.-Y.Ng and D.P.Tsai,”Surface plasmon effects on the far-field signals of AgOX-type super-resolution near-field structure”,Jpn.J.Appl.Phys.43,4713(2004).
[20]T.C.Chu, W.-C.Liu and D.P.Tsai,”Near- and far-field optical properties of embedded scatters in AgOX-type super-resolution near-field structures”,Scanning,26,102(2004).
[21] T.C.Chu, W.-C.Liu and D.P.Tsai,”Enhanced resolution induced by random silver nanoparticles in near-field optical disks”,Opt.Common.246,561(2005).
[22]M.-Y.Ng and W.-C.Liu,”Super-resolution and frequency-dependent efficiency of near-field optical disks with silver nanoparticles”,Opt.Express.13,9422(2005).
[23]W.C.Lin, T.S.Kao, H.H.Chang, Y.H.Lin, Y.H.Fu, C.T.Wu, K.H.Chen and D.P.Tsai,”Study of a Super-resolution optical structure :polycarbonate/ZnS-SiO2/ZnO/ZnS-SiO3/Ge2Sb2Te5/ZnS-SiO2”,Jpn.J.Appl.Phys.42,1029(2003).
[24]T.Kikukawa, T.Nakano, T.Shima, and J.Tominaga,”Rigid bubble bit formation and huge signal enhancement in super-resolution near-field structure disk with platinum-oxide layer”,Appl.Phys.Lett.81,4697(2002).
[25]H.H.Hopkins,”Diffraction theory of laser read-out systems for optical video discs”,J.Opt.Soc.Am.69,4(1979).
[26]J.Braat,”Differential time detection for radial tracking of optical disks”,Appl.Opt.37,6973(1998).
[27]W.-C.Liu, M.-Y.NG and D.P.Tsai,”Surface plasmon effects on the far field signals of AgOx-type super resolution near-field structure”,Jpn.J.Appl.Phys,43,4713(2004).
[28]謝昇哲,”超解析近場結構的模擬與分析”,國立臺灣大學光電工程
學研究所,碩士論文,2005.
[29]T.C.Chu, D.P.Tsai and W.-C.Liu,”Readout contrast beyond
diffraction limit by a slab of random nanostructures”, Opt.Express 15,12(2007).
第二章
[1]J.W.Goodman,Introduction to Fourier Optics,4thedition (McGRAW-Hill ,2002).
[2]K.Iizuka,Elements of photonics,volume 1,in free space and special media(Wiley-Interscience,New York,2002).
[3]A.B.Marehant,Optical recording: a technical overview (Addison-Wesley,1990).
[4]J.W.Cooley and J.W.Tukey ,”An algorithm for the machine calculation of complex Fourier series”,Mathematics of Computation.19,297(1965).
[5]姜建國,曹建中,高玉明,”信號與系統分析基礎”,清華大學出版社,1996.
第三章
[1]J.W.Goodman,Introduction to Fourier optics,2nd edition (McGRAW-Hill ,2002).
[2]E.W.Williams,The CD-ROM and optical disc recording systems(Science Publications,Oxford,1994).
[3]J.J.Zambuto, R.E.Gerber, J.K.Erwin, and M. Mansuripur ,”Ring-lens focusing and push-pull tracking scheme for optical disk systems”,Appl.Opt.33,7987(1994).
[4]A.B.Marehant,Optical recording: a technical overview (Addison-Wesley,1990).
[5]C.Peng, W.-H.Yeh, and M.Mansuripur,”Measurements and simulations of differential phase-tracking signals in optical disk data storage”,Appl.Opt.37,4425(1998).
第四章
[1]E.Hecht,Optics,4thedition(Addison-Wesley,2002).
[2]A.Hugo, J.N.Davidson, Thin films in optics(FocalP, New York ,1967).
[3]O.S.Heavens,Optical properties of thin solid films(Dover
Publications, New York, 1965).
[4]N.Tokushuku,”High C/N recording in Sb2Se3/Bi write-once disk ”Jpn.J.Appl.Phys.31,456(1992).
[5]謝昇哲,”超解析近場結構的模擬與分析”,國立臺灣大學光電工程
學研究所,碩士論文,2005.
[6]A.E.Bell and F.W.Spong,” Antireflection structures
for optical recording”, IEEE J. Quantum Electron, QE-14,487(1978).
[7]C.Peng,”Superresolution near-field readout in
phase-change optical disk data storage”, Appl.Opt.40,3922(2001).
第五章
[1]吳民耀、劉威志,”表面電漿子理論與模擬 ”,物理雙月刊(廿八卷二期),pp:486~496 2006年.
[2]J.Tominaga, T.Nakano,”Optical near-field recording science and
technology”( Springer-Verlag,Berlin,Heidelberg ,2005).
[3]J.M.Vigoureux, D.Courjon, ”Detection of nonradiative fields in light of the Heisenberg uncertainty principle and the Rayleigh criterion”, Appl.Phys. 31,3170 (1992).
[4]J.M.Vigoureux, F.Depasse, C.Girard, ”Superresolution of
near-field optical microscopy defined from properties of confined
electromagnetic waves”, Appl.Phys. 31,3036 (1992).
[5]L.Novotny, D.W.Pohl, P.Regli,”Light propagation through nanometer-sized structures: the two-dimensional-aperture
scanning near-field optical microscope”,J. Opt. Soc.11,1768 (1994).
[6]T.C.Chu, D.P.Tasi, W.-C.Liu, ”Readout contrast beyond diffraction limit by a slab of random nanostructures”, Opt. Express 15, 12 (2007).