研究生: |
林奐均 Lin, Huan-Chun |
---|---|
論文名稱: |
以支持向量機、優勢約略集合法與形式概念分析探勘生技美妝產品之消費者輪廓 Mining Consumer Behaviors of Biocosmetic Products by Using the Support Vector Machine, Dominance-based Rough Set Approach and Formal Concept Analysis |
指導教授: |
黃啟祐
Huang, Chi-Yo |
口試委員: |
曾國雄
Tzeng, Gwo-Hshiung 楊嘉麗 Yang, Chia-Lee 黃啟祐 Huang, Chi-Yo |
口試日期: | 2022/07/05 |
學位類別: |
碩士 Master |
系所名稱: |
工業教育學系 Department of Industrial Education |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 英文 |
論文頁數: | 134 |
中文關鍵詞: | 生技美妝產品 、消費者行為 、大數據分析 、支持向量機 、優勢關係約略集合理論 、形式概念分析 、人物誌 |
英文關鍵詞: | Custommer behavior, Dominance-based rough set approach, Formal concept analysis, Persona |
研究方法: | 次級資料分析 |
DOI URL: | http://doi.org/10.6345/NTNU202200721 |
論文種類: | 學術論文 |
相關次數: | 點閱:221 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著生技產業的發展,美妝產品也大量應用生技技術。隨著大數據時代的來臨,挖掘客戶行為模式已經成為日益盛行之行銷工具。精準的數據分析,能作為行銷人員訂定正確行銷策略,對於資源、經費有限的公司來說,不啻行銷利器。然而如何運用大數據分析,訂定生技美妝產品的行銷策略,少有學者研究。且如何解讀大數據分析所推衍之規則與結果,亦為生技美妝產業經理人與行銷人員亟待克服的問題。唯少有學者討論相關議題。
因此,本研究擬提出一新型決策分析框架,跨越研究缺口。本研究--使用支持向量機 (Support Vector Machine,SVM)、優勢約略集合法 (Dominance Based Rough Set Approach,DRSA)和形式概念分析(Formal Concept Analysis,FCA)探勘生技美妝產品之消費者行為,並採用人物誌 (Persona),描繪出顧客的具體形象,幫助行銷人員清楚了解目標市場的客戶,設計出更符合其需求的產品。
為驗證分析架構之可行性,本研究導入國內某生技美妝公司於2018年至2019年間的客戶消費資料,並將消費者劃分為新客戶、沉睡客戶、流失客戶及 忠誠客戶等四個市場區隔後,導入優勢約略集合法,萃取每一市場區隔消費行為之規則,其後,利用形式概念分析法,歸納消費者行為,並將之視覺化。最後,使用人物誌描繪各市場區隔消費者之典型範例。本研究以Aiko、Hana、Rose與Sue等虛擬人物代表生技美妝市場四種市場區隔的客戶:Aiko喜歡購買與面部和嘴唇相關的化妝品和護膚品;Sue則喜歡購買爽膚水和乳液。經專家確認,四種虛擬人物與其消費行為,與實務經驗相符。本研究所提出的框架有助於識別客戶及其特徵,幫助行銷人員規劃策略。
With the development of the biotechnological industry, biotechnology is widely used in beauty products. With the advent of big data, mining customer behavior patterns has become an increasingly popular marketing tool. Marketing managers can use accurate data analysis to determine the correct marketing strategy. Primarily, data analytics can serve as a marketing tool for companies with limited resources and funds. However, few scholars have studied using big data analysis to determine marketing strategies for biotech beauty products. How to interpret the rules and results derived from big data analysis is also an urgent problem to be overcome by managers and marketers in the biotechnology beauty industry. Few scholars discuss the issue.
Therefore, this study proposes a new decision analysis framework to bridge the research gap. In this study, Support Vector Machine (SVM), Dominance Based Rough Set Approach, DRSA and Formal Concept Analysis (FCA) explore the consumer behavior of biotechnology beauty products, and use Persona to describe the specific image of customers, helping marketers clearly understand the target market customers, and design products that better meet their needs. SVM filters out the data with inconsistent characteristics. DRSA generates a generic description of each segmentation, the so-called decision rule. Those descriptions derive a concept hierarchy through example of segmenting consumers in each market is depicted with Personas.
In order to verify the feasibility of the analysis framework, this study introduces the customer consumption data of a domestic biotechnological beauty company from 2018 to 2019. The data is divided into four segments which are: new customers, sleep customers, lost customers, and loyal customers. The Virtual characters such as Aiko, Hana, Rose and Sue were used to represent customers in four market segments of biotech beauty market: Aiko likes to buy cosmetics and skincare products related to face and lips; Sue likes to buy toners and lotions. Confirmed by experts, four virtual characters and their consumption behavior, consistent with practical experience. The framework presented in this study helps identify customers and their characteristics and helps marketers plan their strategies.
Acharjya, D. P., & Ahmed, N. S. S. (2021). Tracing of online assaults in 5G networks using dominance based rough set and formal concept analysis. Peer-to-Peer Networking and Applications, 14(1), 349-374. doi:10.1007/s12083-020-00983-6
Ahmad, A. K., Jafar, A., & Aljoumaa, K. (2019). Customer churn prediction in telecom using machine learning in big data platform. Journal of Big Data, 6(1), 28. doi:10.1186/s40537-019-0191-6
Alves, A. L., Marques, A. L. P., Martins, E., Silva, T. H., & Reis, R. L. (2017). Cosmetic Potential of Marine Fish Skin Collagen. Cosmetics, 4(4). doi:10.3390/cosmetics4040039
An, J., Kwak, H., Jung, S.-g., Salminen, J., & Jansen, B. J. (2018). Customer segmentation using online platforms: isolating behavioral and demographic segments for persona creation via aggregated user data. Social Network Analysis and Mining, 8(1), 54. doi:10.1007/s13278-018-0531-0
Anitha, P., & Patil, M. M. (2019). RFM model for customer purchase behavior using K-Means algorithm. Journal of King Saud University - Computer and Information Sciences, 34(5), 1785-1792. doi:10.1016/j.jksuci.2019.12.011
Bødker, S. (2000). Scenarios in user-centred design—setting the stage for reflection and action. Interacting with Computers, 13(1), 61-75. doi:10.1016/S0953-5438(00)00024-2
Benmahamed, Y., Teguar, M., & Boubakeur, A. (2018). Diagnosis of Power Transformer Oil Using PSO-SVM and KNN Classifiers. Paper presented at the 2018 International Conference on Electrical Sciences and Technologies in Maghreb (CISTEM).
Błaszczyński, J., Filho, A. T. d. A., Matuszyk, A., Szeląg, M., & Słowiński, R. (2021). Auto loan fraud detection using dominance-based rough set approach versus machine learning methods. Expert Systems with Applications, 163, 113740. doi:10.1016/j.eswa.2020.113740
Błaszczyński, J., Greco, S., Matarazzo, B., Słowiński, R., & Szela̧g, M. (2013). jMAF - Dominance-Based Rough Set Data Analysis Framework. In A. Skowron & Z. Suraj (Eds.), Rough Sets and Intelligent Systems - Professor Zdzisław Pawlak in Memoriam: Volume 1 (pp. 185-209). Berlin, Heidelberg: Springer Berlin Heidelberg.
Boser, B. E., Guyon, I. M., & Vapnik, V. N. (1992). A training algorithm for optimal margin classifiers. Paper presented at the Proceedings of the fifth annual workshop on Computational learning theory, Pittsburgh, Pennsylvania, USA.
Bouyssou, D. (2001). Outranking methodsOutranking Methods. In C. A. Floudas & P. M. Pardalos (Eds.), Encyclopedia of Optimization (pp. 1919-1925). Boston, MA: Springer US.
Britannica, T. E. o. E. (2020). Intension and extension. In Encyclopedia Britannica (Vol. 2020). Chicago: Encyclopædia Britannica, inc.
Camilleri, M. A. (2018). Market Segmentation, Targeting and Positioning. In M. A. Camilleri (Ed.), Travel Marketing, Tourism Economics and the Airline Product: An Introduction to Theory and Practice (pp. 69-83). Cham, Switzerland: Springer International Publishing.
Chang, Y.-n., Lim, Y.-k., & Stolterman, E. (2008). Personas: from theory to practices. Paper presented at the NordiCHI08:the 5th Nordic conference on Human-computer interaction: building bridges.
Cheng, C.-H., & Chen, Y.-S. (2009). Classifying the segmentation of customer value via RFM model and RS theory. Expert Systems with Applications, 36(3, Part 1), 4176-4184. doi:10.1016/j.eswa.2008.04.003
Christy, A. J., Umamakeswari, A., Priyatharsini, L., & Neyaa, A. (2021). RFM ranking – An effective approach to customer segmentation. Journal of King Saud University - Computer and Information Sciences, 33(10), 1251-1257. doi:10.1016/j.jksuci.2018.09.004
Cooper, A. (1998). The Inmates Are Running the Asylum: Why High Tech Products Drive Us Crazy and How to Restore the Sanity. Carmel, CA: Sams Publishing.
Cooper, A. (2020). The Long Road to Inventing Design Personas [Web blog message]. Retrieved from https://onezero.medium.com/in-1983-i-created-secret-weapons-for-interactive-design-d154eb8cfd58
Cooper, A., Reimann, R., Cronin, D., & Noessel, C. (2014). About face: the essentials of interaction design. New York, NY: John Wiley & Sons.
Cortelette Junior, M. A., João Paulo A. . (2018). Toward an Ontological Analysis of Archetypal Entities in the Marketing Domain: Personas and Related Concepts. Paper presented at the ONTOBRAS.
Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273-297. doi:10.1007/BF00994018
Cota, M. P., Rodríguez, M. D., González-Castro, M. R., & Gonçalves, R. M. M. (2017, 21-24 June 2017). Massive data visualization analysis analysis of current visualization techniques and main challenges for the future. Paper presented at the 2017 12th Iberian Conference on Information Systems and Technologies (CISTI).
Couto, A. B. G. d. (2015). Using a Dominance-based Rough Set Approach for Analysing Business Indicators. Procedia Computer Science, 55, 350-359. doi:10.1016/j.procs.2015.07.062
Cristianini, N., & Ricci, E. (2008). Support Vector Machines. In M.-Y. Kao (Ed.), Encyclopedia of Algorithms (pp. 928-932). Boston, MA: Springer US.
De Leon Izeppi, G. A., Dubois, J.-L., Balle, A., & Soutelo-Maria, A. (2020). Economic risk assessment using Monte Carlo simulation for the production of azelaic acid and pelargonic acid from vegetable oils. Industrial Crops and Products, 150, 112411. doi:10.1016/j.indcrop.2020.112411
De Marsico, M., & Levialdi, S. (2004). Evaluating web sites: exploiting user's expectations. International journal of human-computer studies, 60(3), 381-416.
Dharwada, P., Greenstein, J. S., Gramopadhye, A. K., & Davis, S. J. (2007). A Case Study on Use of Personas in Design and Development of an Audit Management System. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 51(5), 469-473. doi:10.1177/154193120705100509
Dogan, O., Gurcan, O. F., Oztaysi, B., & Gokdere, U. (2019). Analysis of Frequent Visitor Patterns in a Shopping Mall. Paper presented at the Industrial Engineering in the Big Data Era, Cham, Switzerland.
Dreyer, K. J., Hirschhorn, D., Thrall, J. H., & PACS, M. (2006). Pacs: A Guide to the Digital Revolution. New York, NY: Springer.
Du, W. S., & Hu, B. Q. (2016). Dominance-based rough set approach to incomplete ordered information systems. Information Sciences, 346-347, 106-129. doi:10.1016/j.ins.2016.01.098
Fan, T.-F., Liau, C.-J., & Liu, D.-R. (2009). Dominance-based Rough Set Analysis for Uncertain Data Tables. Paper presented at the IFSA/EUSFLAT Conf.
Fang, S.-K., Shyng, J.-Y., Lee, W.-S., & Tzeng, G.-H. (2012). Exploring the preference of customers between financial companies and agents based on TCA. Knowledge-Based Systems, 27, 137-151.
Farquad, M. A. H., & Bose, I. (2012). Preprocessing unbalanced data using support vector machine. Decision Support Systems, 53(1), 226-233. doi:10.1016/j.dss.2012.01.016
Ferretti, P., Zolin, M. B., & Ferraro, G. (2020). Relationships among sustainability dimensions: evidence from an Alpine area case study using Dominance-based Rough Set Approach. Land Use Policy, 92, 104457. doi:10.1016/j.landusepol.2019.104457
Fletcher, R. (2000, 2000/05/23). Quadratic Programming. Paper presented at the Practical Methods of Optimization.
Ganter, B., & Wille, R. (1998). Formal concept analysis: mathematical foundations. New York, NY: Springer.
Gowin, E., Błaszczyński, J., Słowiński, R., Wysocki, J., & Januszkiewicz-Lewandowska, D. (2019). Differential Diagnosis of Bacterial and Viral Meningitis Using Dominance-Based Rough Set Approach. Paper presented at the Artificial Intelligence in Medicine: Knowledge Representation and Transparent and Explainable Systems, Cham, Switzerland.
Goyal, N., & Jerold, F. (2021). Biocosmetics: technological advances and future outlook. Environmental Science and Pollution Research. doi:10.1007/s11356-021-17567-3
Greco, S., Matarazzo, B., & Slowinski, R. (1998). A New Rough Set Approach to Evaluation of Bankruptcy Risk. In C. Zopounidis (Ed.), Operational Tools in the Management of Financial Risks (pp. 121-136). Boston, MA: Springer US.
Greco, S., Matarazzo, B., & Slowinski, R. (2000). Extension Of The Rough Set Approach To Multicriteria Decision Support. INFOR: Information Systems and Operational Research, 38(3), 161-195. doi:10.1080/03155986.2000.11732407
Greco, S., Matarazzo, B., & Slowinski, R. (2001). Rough sets theory for multicriteria decision analysis. European Journal of Operational Research, 129(1), 1-47. doi:10.1016/S0377-2217(00)00167-3
Greco, S., Matarazzo, B., Slowinski, R., & Stefanowski, J. (2001). Variable Consistency Model of Dominance-Based Rough Sets Approach. Paper presented at the Rough Sets and Current Trends in Computing, Berlin, Heidelberg.
Greco, S., Słowiński, R., & Zielniewicz, P. (2013). Putting Dominance-based Rough Set Approach and robust ordinal regression together. Decision Support Systems, 54(2), 891-903. doi:10.1016/j.dss.2012.09.013
Gupta, S., Hanssens, D., Hardie, B., Kahn, W., Kumar, V., Lin, N., . . . Sriram, S. (2006). Modeling Customer Lifetime Value. Journal of Service Research, 9(2), 139-155. doi:10.1177/1094670506293810
Guyon, I., & Elisseeff, A. (2003). An introduction to variable and feature selection. J. Mach. Learn. Res., 3, 1157–1182.
Han, J., Kamber, M., & Pei, J. (2012a). 9 - Classification: Advanced Methods. In J. Han, M. Kamber, & J. Pei (Eds.), Data Mining: Concepts and Techniques (3 ed., pp. 393-442). Boston: Morgan Kaufmann.
Han, J., Kamber, M., & Pei, J. (2012b). Data Mining: Concepts and Techniques (3 ed.). Boston: Morgan Kaufmann.
Hao, J., Bouzouane, A., & Gaboury, S. (2018). Recognizing multi-resident activities in non-intrusive sensor-based smart homes by formal concept analysis. Neurocomputing, 318, 75-89. doi:10.1016/j.neucom.2018.08.033
Heldt, R., Silveira, C. S., & Luce, F. B. (2021). Predicting customer value per product: From RFM to RFM/P. Journal of Business Research, 127, 444-453. doi:10.1016/j.jbusres.2019.05.001
Hoyer, W. D., & Brown, S. P. (1990). Effects of Brand Awareness on Choice for a Common, Repeat-Purchase Product. Journal of Consumer Research, 17(2), 141-148. doi:10.1086/208544
Hu, Q., Chakhar, S., Siraj, S., & Labib, A. (2017). Spare parts classification in industrial manufacturing using the dominance-based rough set approach. European Journal of Operational Research, 262(3), 1136-1163. doi:10.1016/j.ejor.2017.04.040
Hu, Y.-H., Huang, T. C.-K., & Kao, Y.-H. (2013). Knowledge discovery of weighted RFM sequential patterns from customer sequence databases. Journal of Systems and Software, 86(3), 779-788. doi:10.1016/j.jss.2012.11.016
Huang, R., & Sarigöllü, E. (2012). How brand awareness relates to market outcome, brand equity, and the marketing mix. Journal of Business Research, 65(1), 92-99. doi:10.1016/j.jbusres.2011.02.003
Hug, N. (2020). Surprise: A Python library for recommender systems. Journal of Open Source Software, 5(52), 2174.
Hughes, A. M. (2000). Strategic database marketing: the masterplan for starting and managing a profitable, customer-based marketing program (Vol. 12). New York, NY: McGraw-Hill Education.
Jain, P., Djamasbi, S., & Wyatt, J. (2019). Creating Value with Proto-Research Persona Development, Cham, Switzerland.
Jankowski, P. (1995). Integrating geographical information systems and multiple criteria decision-making methods. International Journal of Geographical Information Systems, 9(3), 251-273. doi:10.1080/02693799508902036
Jiang, G., Ogasawara, K., Endoh, A., & Sakurai, T. (2003). Context-based ontology building support in clinical domains using formal concept analysis. International Journal of Medical Informatics, 71(1), 71-81. doi:10.1016/S1386-5056(03)00092-3
Joachims, T. (1998, 1998//). Text categorization with Support Vector Machines: Learning with many relevant features. Paper presented at the Machine Learning: ECML-98, Berlin, Heidelberg.
Joh, C.-H., Timmermans, H. J. P., & Popkowski-Leszczyc, P. T. L. (2003). Identifying purchase-history sensitive shopper segments using scanner panel data and sequence alignment methods. Journal of Retailing and Consumer Services, 10(3), 135-144. doi:10.1016/S0969-6989(03)00005-5
Kang, R. (2020). Using logistic regression for persona segmentation in tourism: A case study. Social Behavior and Personality: an international journal, 48(4), 1-16.
Kapoor, P., Singh, P. K., & Cherukuri, A. K. (2020). Crime Data Set Analysis Using Formal Concept Analysis (FCA): A Survey. Paper presented at the Advances in Data Sciences, Security and Applications, Singapore.
Kelleher, J. D., & Tierney, B. (2018). Data science. London, England: The MIT Press.
Kester, Q.-A. (2013). Optimization of Searches on Social Networks using Graph theory and Formal Concepts Analysis. International Journal of Advanced Research in Computer Engineering & Technology (IJARCET), 2(1), 293-303.
Khalili-Damghani, K., Abdi, F., & Abolmakarem, S. (2018). Hybrid soft computing approach based on clustering, rule mining, and decision tree analysis for customer segmentation problem: Real case of customer-centric industries. Applied Soft Computing, 73, 816-828. doi:10.1016/j.asoc.2018.09.001
Khan, I., Hollebeek, L. D., Fatma, M., Islam, J. U., & Riivits-Arkonsuo, I. (2020). Customer experience and commitment in retailing: Does customer age matter? Journal of Retailing and Consumer Services, 57, 102219. doi:10.1016/j.jretconser.2020.102219
Kim, G., Chae, B. K., & Olson, D. L. (2013). A support vector machine (SVM) approach to imbalanced datasets of customer responses: comparison with other customer response models. Service Business, 7(1), 167-182. doi:10.1007/s11628-012-0147-9
Koetz, C. (2019). Managing the customer experience: a beauty retailer deploys all tactics. Journal of Business Strategy, 40(1), 10-17. doi:10.1108/JBS-09-2017-0139
Kotler, P., Kartajaya, H., & Setiawan, I. (2021). Marketing 5.0: Technology for humanity. New York, NY: John Wiley & Sons.
Kotler, P., & Keller, K. L. (2016). Marketing Management, 15th Edition. Harlow, England: Pearson Education, Inc.
Kumar, S., & Zymbler, M. (2019). A machine learning approach to analyze customer satisfaction from airline tweets. Journal of Big Data, 6(1), 62. doi:10.1186/s40537-019-0224-1
Kumar, V., & Venkatesan, R. (2005). Who are the multichannel shoppers and how do they perform?: Correlates of multichannel shopping behavior. Journal of Interactive Marketing, 19(2), 44-62. doi:10.1002/dir.20034
Kwak, H., Jaju, A., & Zinkhan, G. M. (2015). Astrology: Its Influence on Consumers’ Buying Patterns and Consumers’ Evaluations of Products and Services. Paper presented at the Proceedings of the 2000 Academy of Marketing Science (AMS) Annual Conference, Cham, Switzerland.
Lee, S.-Y., & Park, D.-H. (2021). UX Methodology Study by Data Analysis Focusing on deriving persona through customer segment classification. Journal of Intelligence and Information Systems, 27(1), 151-176. doi:10.13088/JIIS.2021.27.1.151
Li, Y., Liao, X., & Zhao, W. (2009). A rough set approach to knowledge discovery in analyzing competitive advantages of firms. Annals of Operations Research, 168(1), 205-223.
Liou, J. J. H. (2009). A novel decision rules approach for customer relationship management of the airline market. Expert Systems with Applications, 36(3, Part 1), 4374-4381. doi:10.1016/j.eswa.2008.05.002
Liou, J. J. H., & Tzeng, G.-H. (2010). A dominance-based rough set approach to customer behavior in the airline market. Information Sciences, 180(11), 2230-2238. doi:10.1016/j.ins.2010.01.025
Luo, F., Pang, D., Lin, Z., & Mi, J. (2019, 25-28 May 2019). Natural Gas Customer Persona and Intelligent Assessment Research Based on K-Means Method. Paper presented at the 2019 2nd International Conference on Artificial Intelligence and Big Data (ICAIBD).
MacDonald, D., & Dildar, Y. (2020). Social and psychological determinants of consumption: Evidence for the lipstick effect during the Great Recession. Journal of Behavioral and Experimental Economics, 86, 101527. doi:10.1016/j.socec.2020.101527
McCarty, J. A., & Hastak, M. (2007). Segmentation approaches in data-mining: A comparison of RFM, CHAID, and logistic regression. Journal of Business Research, 60(6), 656-662. doi:10.1016/j.jbusres.2006.06.015
Miguéis, V. L., Camanho, A. S., & Borges, J. (2017). Predicting direct marketing response in banking: comparison of class imbalance methods. Service Business, 11(4), 831-849. doi:10.1007/s11628-016-0332-3
Min, J. H., & Lee, Y.-C. (2005). Bankruptcy prediction using support vector machine with optimal choice of kernel function parameters. Expert Systems with Applications, 28(4), 603-614. doi:10.1016/j.eswa.2004.12.008
Morais, T., Cotas, J., Pacheco, D., & Pereira, L. (2021). Seaweeds Compounds: An Ecosustainable Source of Cosmetic Ingredients? Cosmetics, 8(1). doi:10.3390/cosmetics8010008
Märtin, C., Asta, P., & Bissinger, B. (2020). Optimizing the Digital Customer Journey – Improving User Experience by Persona-Based and Situation-Aware Adaptations. Cham, Switzerland.
Mulder, S., & Yaar, Z. (2006). The user is always right: A practical guide to creating and using personas for the web. Indianapolis, IN: New Riders.
Nocedal, J., & Wright, S. J. (2006). Numerical Optimization. New York,NY: Springer.
Novak, A. C., Sydney, E. B., & Soccol, C. R. (2014). Biocosmetics. In S. K. Brar, G. S. Dhillon, & C. R. Soccol (Eds.), Biotransformation of Waste Biomass into High Value Biochemicals (pp. 389-411). New York, NY: Springer New York.
Obiedkov, S., Klimushkin, M., Shabanova, M., & Zaytsev, D. (2013). A Multidimensional Model for Analyzing Democratic Development in Central and Eastern Europe. Transition Studies Review, 20(2), 191-209. doi:10.1007/s11300-013-0277-3
Osuna, E., Freund, R., & Girosit, F. (1997, 17-19 June 1997). Training support vector machines: an application to face detection. Paper presented at the Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.
Pawlak, Z. (1982). Rough sets. International Journal of Computer & Information Sciences, 11(5), 341-356. doi:10.1007/BF01001956
Peters, J. F., & Skowron, A. (2002). A rough set approach to knowledge discovery. International Journal of Intelligent Systems, 17(2), 109-112.
Polkowski, L., Tsumoto, S., & Lin, T. Y. (2012). Rough set methods and applications: new developments in knowledge discovery in information systems (Vol. 56). Berlin, Germany: Physica Heidelberg.
Porter, S. S., & Claycomb, C. (1997). The influence of brand recognition on retail store image. Journal of Product & Brand Management, 6(6), 373-387. doi:10.1108/10610429710190414
Priss, U. (2006). Formal concept analysis in information science. Annual Review of Information Science and Technology, 40(1), 521-543. doi:10.1002/aris.1440400120
Quadrana, M., Cremonesi, P., & Jannach, D. (2018). Sequence-Aware Recommender Systems. ACM Comput. Surv., 51(4), Article 66. doi:10.1145/3190616
Ramaswamy, S., & DeClerck, N. (2018). Customer Perception Analysis Using Deep Learning and NLP. Procedia Computer Science, 140, 170-178. doi:10.1016/j.procs.2018.10.326
Ravi, K., Ravi, V., & Prasad, P. S. R. K. (2017). Fuzzy formal concept analysis based opinion mining for CRM in financial services. Applied Soft Computing, 60, 786-807. doi:10.1016/j.asoc.2017.05.028
Raza, M. S., & Qamar, U. (2019). A parallel approach to calculate lower and upper approximations in dominance based rough set theory. Applied Soft Computing, 84, 105699. doi:10.1016/j.asoc.2019.105699
Revella, A. (2015). Buyer Personas: How to Gain Insight into your Customer's Expectations, Align your Marketing Strategies, and Win More Business. New York,NY: John Wiley & Sons.
Rita, P., Oliveira, T., & Farisa, A. (2019). The impact of e-service quality and customer satisfaction on customer behavior in online shopping. Heliyon, 5(10), e02690. doi:10.1016/j.heliyon.2019.e02690
Roberts, C. (2019). Seven Advantages of Data Mining in Marketing [Press release]. Retrieved from https://tweakyourbiz.com/marketing/market-research/data-mining-advantages
Robust outlier detection using SVM regression. (2004, 25-29 July 2004). Paper presented at the 2004 IEEE International Joint Conference on Neural Networks (IEEE Cat. No.04CH37541).
Rogic, S., & Kascelan, L. (2019). Customer Value Prediction in Direct Marketing Using Hybrid Support Vector Machine Rule Extraction Method. Paper presented at the New Trends in Databases and Information Systems, Cham, Switzerland.
Ruigang, F., Biao, L., Yinghui, G., & Ping, W. (2016, 14-17 Oct. 2016). Content-based image retrieval based on CNN and SVM. Paper presented at the 2016 2nd IEEE International Conference on Computer and Communications (ICCC).
Sadick, N., Edison, B. L., John, G., Bohnert, K. L., & Green, B. (2019). An Advanced, Physician-Strength Retinol Peel Improves Signs of Aging and Acne Across a Range of Skin Types Including Melasma and Skin of Color. Journal of drugs in dermatology : JDD, 18(9), 918-923. Retrieved from http://europepmc.org/abstract/MED/31524348
Safari, F., Safari, N., & Montazer, G. A. (2016). Customer lifetime value determination based on RFM model. Marketing Intelligence & Planning, 34(4), 446-461. doi:10.1108/MIP-03-2015-0060
Saitoh, F. (2020). Visualized Benefit Segmentation Using Supervised Self-organizing Maps: Support Tools for Persona Design and Market Analysis. Paper presented at the Intelligent Information and Database Systems, Cham, Switzerland.
Sato, M., & Tsukimoto, H. (2001). Rule extraction from neural networks via decision tree induction. Paper presented at the IJCNN'01. International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222).
Segen's Medical Dictionary. (2011). Biocosmetics. In Segen’s Medical Dictionary: Farlex.
Shen, K.-Y., Sakai, H., & Tzeng, G.-H. (2019). Comparing Two Novel Hybrid MRDM Approaches to Consumer Credit Scoring Under Uncertainty and Fuzzy Judgments. International Journal of Fuzzy Systems, 21(1), 194-212. doi:10.1007/s40815-018-0525-0
Shen, K.-Y., & Tzeng, G.-H. (2015). Combined soft computing model for value stock selection based on fundamental analysis. Applied Soft Computing, 37, 142-155. doi:10.1016/j.asoc.2015.07.030
Shen, K.-Y., Zavadskas, E. K., & Tzeng, G.-H. (2018). Updated discussions on ‘Hybrid multiple criteria decision-making methods: a review of applications for sustainability issues’. Economic Research-Ekonomska Istraživanja, 31(1), 1437-1452. doi:10.1080/1331677X.2018.1483836
Shyng, J.-Y., Shieh, H.-M., & Tzeng, G.-H. (2010). An integration method combining Rough Set Theory with formal concept analysis for personal investment portfolios. Knowledge-Based Systems, 23(6), 586-597.
Singh, A., & Misra, S. C. (2020). A Dominance based Rough Set analysis for investigating employee perception of safety at workplace and safety compliance. Safety Science, 127, 104702. doi:10.1016/j.ssci.2020.104702
Stewart, T. J. (1992). A critical survey on the status of multiple criteria decision making theory and practice. Omega, 20(5-6), 569-586.
Sulistiani, H., Muludi, K., & Syarif, A. (2019). Implementation of Dynamic Mutual Information and Support Vector Machine for Customer Loyalty Classification. Journal of Physics: Conference Series, 1338(1), 12050. doi:10.1088/1742-6596/1338/1/012050
Tavakoli, M., Molavi, M., Masoumi, V., Mobini, M., Etemad, S., & Rahmani, R. (2018). Customer Segmentation and Strategy Development Based on User Behavior Analysis, RFM Model and Data Mining Techniques: A Case Study. Paper presented at the 2018 IEEE 15th International Conference on e-Business Engineering (ICEBE).
Thiyagarasaiyar, K., Goh, B.-H., Jeon, Y.-J., & Yow, Y.-Y. (2020). Algae Metabolites in Cosmeceutical: An Overview of Current Applications and Challenges. Marine Drugs, 18(6). doi:10.3390/md18060323
Tzeng, G.-H., & Shen, K.-Y. (2017). New Concepts and Trends of Hybrid Multiple Criteria Decision Making (s. Edition Ed.). Boca Raton, FL: CRC Press.
Vandamme, E. (2001). Biocosmetics produced via microbial and enzymatic synthesis. Agro Food Industry Hi-Tech, 12(1), 11-18.
Venkatesan, R., & Kumar, V. (2004). A Customer Lifetime Value Framework for Customer Selection and Resource Allocation Strategy. Journal of Marketing, 68(4), 106-125. doi:10.1509/jmkg.68.4.106.42728
Verhoef, P. C., & Lemon, K. N. (2013). Successful customer value management: Key lessons and emerging trends. European Management Journal, 31(1), 1-15. doi:10.1016/j.emj.2012.08.001
Widodo, A., & Yang, B.-S. (2007). Support vector machine in machine condition monitoring and fault diagnosis. Mechanical Systems and Signal Processing, 21(6), 2560-2574. doi:10.1016/j.ymssp.2006.12.007
Wille, R. (1982). Restructuring Lattice Theory: An Approach Based on Hierarchies of Concepts. Paper presented at the Ordered Sets, Dordrecht, Netherlands.
Wolski, M., & Gomolińska, A. (2020). Data meaning and knowledge discovery: Semantical aspects of information systems. International Journal of Approximate Reasoning, 119, 40-57. doi:10.1016/j.ijar.2020.01.002
Yalcinkaya, G. (2019). Is the beauty industry finaly addressing with age? [Press release]. Retrieved from https://www.dazeddigital.com/beauty/head/article/45470/1/is-the-beauty-industry-finally-addressing-its-problem-with-age
Yevtushenko, S. A. (2000). System of data analysis “Concept Explorer”. Paper presented at the In Proc. 7th National Conference on Artificial Intelligence (KII'00), Russia.
Yu, S.-S., Chu, S.-W., Wang, C.-M., Chan, Y.-K., & Chang, T.-C. (2018). Two improved k-means algorithms. Applied Soft Computing, 68, 747-755. doi:10.1016/j.asoc.2017.08.032
Yuan, C., & Yang, H. (2019). Research on K-Value Selection Method of K-Means Clustering Algorithm. J, 2(2), 226-235. Retrieved from https://www.mdpi.com/2571-8800/2/2/16
Yuan, X. (2017). An improved Apriori algorithm for mining association rules. AIP Conference Proceedings, 1820(1), 080005. doi:10.1063/1.4977361
Zavadskas, E. K., Govindan, K., Antucheviciene, J., & Turskis, Z. (2016). Hybrid multiple criteria decision-making methods: a review of applications for sustainability issues. Economic Research-Ekonomska Istraživanja, 29(1), 857-887. doi:10.1080/1331677X.2016.1237302