研究生: |
劉念青 Liu, Nien-Ching |
---|---|
論文名稱: |
鉑錫與第三元金屬的三元合金觸媒對於乙醇氧化反應表現與機構之探討 Mechanistic investigation of ethanol oxidation reaction on PtSnM trimetals |
指導教授: |
王禎翰
Wang, Jeng-Han |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 76 |
中文關鍵詞: | 乙醇氧化 、電化學 、鉑 、銀 、錫 、三元合金 、XPS |
英文關鍵詞: | EOR, Electrochemistry, Platinum, Tin, Sliver, Trimetallic, XPS |
DOI URL: | http://doi.org/10.6345/NTNU201900077 |
論文種類: | 學術論文 |
相關次數: | 點閱:125 下載:26 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
此次研究主要探討碳黑XC-72上的三金屬觸媒PtSnM(M = Ag,Rh,Pd,Co,Cu)對於乙醇氧化反應(EOR),直接乙醇燃料電池(DEFC)的陽極反應。所有三元合金觸媒都以含浸法合成,利用能量色散X射線光譜儀(EDS)、粉末式X光繞射分析儀(XRD)及X光光電子光譜儀(XPS) 來分別鑑定各元素的組成,晶體結構和氧化態。電化學實驗以循環伏安法(CV) 檢測合成的催化劑以研究反應活性面積(ECSA) 和乙醇氧化反應(EOR) 活性,而以計時電流法(CA)檢測合成的催化劑的穩定性。此外,我們採用傅立葉轉換紅外光譜儀(FTIR) 來研究反應中產生的中間體和產物,以便了解其反應機制。在我們的電化學結果中可以發現PtSnAg和PtSnCu具有更好的EOR活性和穩定性,其中PtSnAg具有最佳的EOR活性和穩定性;它們的催化性能的提高可以歸因於添加了Ag和Cu導致Pt0/ Ptn +的比例增加。我們在最後改變了電化學反應中最佳的三金屬PtSnAg的組成,並發現了具有最佳EOR性能的催化劑Pt3Sn1Ag1。另外在傅立葉轉換紅外光譜(FTIR) 通過主要產物為形成乙酸的四電子氧化路徑來判別PtSnM上的EOR機制。
The present study focuses on the ethanol oxidation reactions (EOR), the anodic reactions for direct ethanol fuel cells (DEFC), on trimetallic PtSnM(M = Ag、Rh、Pd、Co、Cu) on carbon black XC-72. All the ternarycatalysts are synthesized by impregnation method and characterized by Energy dispersive spectroscopy (EDS), X-ray diffraction (XRD),and X-ray photoelectron spectroscopy (XPS) to confirm theircompositions,crystal structuresand oxidation state ofeach element, respectively. The synthesizedcatalysts have then been examined by the electrochemical tests of cyclic voltammetry (CV) to study the ECSAandEOR activity and chronoamperometry (CA)to examine theirstability. Furthermore, we employ in situFTIR to study the intermediates and productsgeneratedin the reaction for the mechanism understanding. Ourelectrochemical results find that PtSnAg and PtSnCu show the better EOR activity and stability, in which PtSnAg has the best one; their enhanced catalytic performance is attributable to increased Pt0/Ptn+ratio induced by the addition of Ag and Cu.Furthermore, we vary the composition of the best PtSnAg trimetal and optimize the Pt3Sn1Ag1catalyst withthe best EOR performance. Also, our FTIR spectra identifythe EOR mechanismon those PtSnM through the four-electron-oxidation pathwayin the formation of acetic acid as the major product.
1. Ethanol Oxidation Reaction on Tandem Pt/Rh/SnOx Catalyst. Catalysts, 2017. 7(9): p. 246.
2. Parreira, L.S., et al., PtSn Electrocatalyst Supported on MWCNT-COOH: Investigating the Ethanol Oxidation Reaction. ChemElectroChem, 2017. 4(8): p. 1950-1958.
3. Rizo, R., et al., Spectroelectrochemical Study of Carbon Monoxide and Ethanol Oxidation on Pt/C, PtSn(3:1)/C and PtSn(1:1)/C Catalysts. Molecules, 2016. 21(9).
4. Chen, D.J. and Y.J. Tong, Irrelevance of Carbon Monoxide Poisoning in the Methanol Oxidation Reaction on a PtRu Electrocatalyst. Angew Chem Int Ed Engl, 2015. 54(32): p. 9394-8.
5. Chung, D.Y., K.-J. Lee, and Y.-E. Sung, Methanol Electro-Oxidation on the Pt Surface: Revisiting the Cyclic Voltammetry Interpretation. The Journal of Physical Chemistry C, 2016. 120(17): p. 9028-9035.
6. Ting, C.-C., et al., Electrocatalytic performance of Pt nanoparticles sputter-deposited on indium tin oxide toward methanol oxidation reaction: The particle size effect. Applied Surface Science, 2017. 416: p. 365-370.
7. Antoniassi, R.M., et al., Synthesis of Pt+SnO 2 /C electrocatalysts containing Pt nanoparticles with preferential (100) orientation for direct ethanol fuel cell. Applied Catalysis B: Environmental, 2017. 218: p. 91-100.
8. Durst, J., et al., Hydrogen Oxidation and Evolution Reaction Kinetics on Carbon Supported Pt, Ir, Rh, and Pd Electrocatalysts in Acidic Media. Journal of the Electrochemical Society, 2014. 162(1): p. F190-F203.
9. Lee,E., et al., Synthesis and Characterization of Pt-Sn-Pd/C Catalysts for Ethanol Electro-Oxidation Reaction. J. Phys. Chem. C 2010. 114: p. 10634-10640.
10.Bach Delpeuch, A., et al., Ethanol oxidation reaction (EOR) investigation on Pt/C, Rh/C, and Pt-based bi- and tri-metallic electrocatalysts: A DEMS and in situ FTIR study. Applied Catalysis B: Environmental, 2016. 181: p. 672-680.
11.Li, M., et al., The role of rhodium and tin oxide in the platinum-based electrocatalysts for ethanol oxidation to CO2. Electrochimica Acta, 2013. 104: p. 454-461.
12. Tabet-Aoul, A., et al., 3D Porous Sphere-Like Aggregates of Bimetallic PtRh Nanoparticles Grown onto Carbon Nanotubes: Efficient andDurable Catalyst for the Ethanol Oxidation Reaction. Journal of The Electrochemical Society, 2017. 164: p. F685-F693.
13. Bai, J., et al., Bimetallic Platinum−Rhodium Alloy Nanodendrites as Highly Active Electrocatalyst for the Ethanol Oxidation Reaction. American Chemical Society, 2018. 10: p. 19755-19763.
14. Dai, S., et al., Promotion of Ternary Pt−Sn−Ag Catalysts toward Ethanol Oxidation Reaction: Revealing Electronic and Structural Effects of Additive Metals. American Chemical Society, 2018. 3: p.2550-2557.
15. Liu, M., et al., Free-Standing 3D Hierarchical Carbon Foam-Supported PtCo Nanowires with “Pt Skin” as Advanced Electrocatalysts. Electrochimica Acta, 2016. 199: p. 218-226.
16. Ocampo-Restrepo, Vivianne K, et al., Catalytic Activity of Pt-Based Nanoparticles with Ni and Co for Ethanol and Acetaldehyde Electrooxidation in Alkaline Medium. Electrochimica Acta, 2017. 246: p. 475-483.
17. Liu, T., et al., Facile Synthesis of PtCu Alloy/Graphene Oxide Hybrids as Improved Electrocatalysts for Alkaline Fuel Cells. ACS Omega, 2018. 3: p. 8724-8732.
18. Yan, Shao-Yan , et al., Enhanced activity of ethanol oxidation reaction on PtM (M¼Au, Ag and Sn): The importance of oxophilicity and surface oxygen containing species. Electrochimica Acta, 2018. 259: p. 733-741.
19. Liu, Y., et al., Electro-Oxidation of Ethanol Using Pt3Sn Alloy Nanoparticles. ACS Catal, 2018. 8: p. 10931-10937.
20. Amani, M., et al., Investigation of methanol oxidation on a highly active and stable Pt–Sn electrocatalyst supported on carbon–polyaniline composite for application in a passive direct methanol fuel cell. Materials Research Bulletin, 2015. 68: p. 166-178.
21. Antolini, E., Catalysts for direct ethanol fuel cells. Journal of Power Sources, 2007. 170(1): p. 1-12.
22. Siller-Ceniceros, A.A., et al., Innovative functionalization of Vulcan XC-72 with Ru organometallic complex: Significant enhancement in catalytic activity of Pt/C electrocatalyst for the methanol oxidation reaction (MOR). Applied Catalysis B: Environmental, 2017. 209: p. 455-467.
23. Calvillo, L., et al., In situ determination of the nanostructure effects on the activity, stability and selectivity of Pt-Sn ethanol oxidation catalysts. Journal of Electroanalytical Chemistry, 2017.
24. Higuchi, E., et al., Ethanol oxidation reaction activity of highly dispersed Pt/SnO2 double nanoparticles on carbon black. Journal of Power Sources, 2011. 196(4): p. 1730-1737.
25. Lei, F., et al., One-pot synthesis of Pt/SnO 2 /GNs and its electro-photo-synergistic catalysis for methanol oxidation. International Journal of Hydrogen Energy, 2016. 41(1): p. 255-264.
26.Velázquez-Palenzuela, A., et al., Sn-modified carbon-supported Pt nanoparticles synthesized using spontaneous deposition as electrocatalysts for direct alcohol fuel cells. International Journal of Hydrogen Energy, 2013. 38(36): p. 16418-16426.
27. Levendorf, A.M., S.-G. Sun, and Y.J. Tong, In Situ FT-IR Investigation of Methanol and CO Electrooxidation on Cubic and Octahedral/Tetrahedral Pt Nanoparticles Having Residual PVP. Electrocatalysis, 2014. 5(3): p. 248-255.
28.Ustarroz, J., et al., Electrodeposition of Highly Porous Pt Nanoparticles Studied by Quantitative 3D Electron Tomography: Influence of Growth Mechanisms and Potential Cycling on the Active Surface Area. ACS Appl Mater Interfaces, 2017. 9(19): p. 16168-16177.
29. Jacob, J.M., et al., Electro-oxidation of ethanol on ternary Pt–Sn–Ce/C catalysts. Applied Catalysis B: Environmental, 2015. 165: p. 176-184.
30. Lu, G.-P., et al., Highly active Pt catalysts promoted by molybdenum-doped SnO2 for methanol electrooxidation. International Journal of Hydrogen Energy, 2015. 40(17): p. 5889-5896.
31. Beyhan, S., et al., Promising anode candidates for direct ethanol fuel cell: Carbon supported PtSn-based trimetallic catalysts prepared by Bo¨nnemann method. International journal of hydrogen energy, 2013. 38: p. 6830-6841.
32. Fenoy, G.E., et al., Layer-by-layer assemblies of highly connected polyelectrolyte capped-Pt nanoparticles for electrocatalysis of hydrogen evolution reaction. Applied Surface Science, 2017. 416: p. 24-32.
33. Liu, H., et al., Trimetallic PtRhNi alloy nanoassemblies as highly active electrocatalyst for ethanol electrooxidation. Nano Research, 2017. 10(10): p. 3324-3332.
34. Themsirimongkon, S, et al., Carbon nanotube-supported Pt-Alloyed metal anode catalysts for methanol and ethanol oxidation. International Journal of Hydrogen Energy, 2018.
35. González-Quijano, D., et al., Performance and in situ FTIR evaluation of Pt-Sn/C Electrocatalysts with several Pt:Sn Atomic Ratios for the Ethanol oxidation Reaction (EOR) in Acid Media. ChemElectroChem, 2018. 5(22): p. 3540-3547.