研究生: |
蔡孟澤 Tsai, Meng-Tse |
---|---|
論文名稱: |
運用不同觀影設備及不同觀影偏好對OTT平台內容推薦系統的體驗差異影響之研究:以Netflix為例 The Impact of Varied Viewing Devices and Preferences on the User Experience Discrepancies in OTT Platform Content Recommendation Systems: A Case Study of Netflix |
指導教授: |
張晏榕
Chang, Yen-Jung |
口試委員: |
張晏榕
Chang, Yen-Jung 周遵儒 Chou, Tzren-Ru 徐肇奕 Hsu, Chao-Yi |
口試日期: | 2024/07/09 |
學位類別: |
碩士 Master |
系所名稱: |
圖文傳播學系碩士在職專班 Department of Graphic Arts and Communications_Continuing Education Master's Program of Graphic Arts and Communications |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 中文 |
論文頁數: | 91 |
中文關鍵詞: | 觀影設備 、觀影偏好 、Netflix 、OTT平台 、觀影動機 |
英文關鍵詞: | Viewing devices, viewing preferences, Netflix, OTT platforms, viewing motivation |
研究方法: | 深度訪談法 、 混合研究方法 |
DOI URL: | http://doi.org/10.6345/NTNU202401867 |
論文種類: | 學術論文 |
相關次數: | 點閱:103 下載:6 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著OTT(Over-the-Top)影音平台的崛起,Netflix作為全球最大的OTT影音平台之一,已經成為人們娛樂生活中不可或缺的一部分。在Netflix平台上,推薦系統扮演著非常重要的角色,它可以根據用戶的個人偏好和觀看歷史等資訊,向用戶推薦最符合其喜好的影視節目。而現有的研究大多僅限於探討Netflix的推薦系統模型,缺少對實際推薦結果的評價和用戶的反應的探討。因此本研究旨在探討不同觀影設備和偏好對推薦系統體驗的影響,並分析其與觀影動機和滿意度的關係,採用混合研究方法,量化部分透過便利抽樣收集401份有效問卷,並進行五位年齡介於20至40歲受訪者的深度訪談。
量化分析結果顯示,男性用戶和每周觀看時間超過10小時的用戶具有較高的使用動機,而從未使用過Netflix的受訪者對該平台表現出極大興趣。平板電腦使用者的使用動機也相對較高。訪談結果顯示,受訪者普遍偏好使用手機和電視觀看影片,對平台介面表示滿意,但希望推薦系統能更精確匹配其偏好。觀影偏好多樣性和設備選擇主要依賴於使用情境和便利性。本研究建議OTT平台提升推薦系統的準確性和個性化,以改善用戶體驗和增強平台競爭力。未來研究可進一步探討不同用戶群體的觀影行為及跨平台推薦系統的效能比較。
With the rise of OTT (Over-the-Top) media platforms, Netflix has become an essential part of entertainment in people's lives, emerging as one of the largest OTT platforms globally. The recommendation system on Netflix plays a crucial role by suggesting shows and movies that align with users' personal preferences and viewing history. While existing research often focuses on Netflix's recommendation system models, there is a lack of studies evaluating actual recommendation outcomes and user reactions. This study aims to investigate the impact of different viewing devices and preferences on the recommendation system experience and analyze its relationship with viewing motivation and satisfaction. A mixed-method approach was adopted, collecting 401 valid questionnaires through convenience sampling for the quantitative analysis and conducting in-depth interviews with five respondents aged 20 to 40 for the qualitative analysis.
The quantitative analysis revealed that male users and those who watch more than 10 hours per week have higher usage motivation. Additionally, respondents who had never used Netflix showed a strong interest in the platform, and tablet users also demonstrated relatively high usage motivation. The interviews indicated that respondents generally preferred using smartphones and TVs for viewing, expressed satisfaction with the platform's interface, but desired more precise recommendations. Viewing preferences and device choices were primarily influenced by context and convenience. This study suggests that OTT platforms should improve the accuracy and personalization of their recommendation systems to enhance user experience and strengthen competitiveness. Future research should further explore the viewing behaviors of different user groups and compare the effectiveness of recommendation systems across platforms.
Allam, A. H., Hussin, A. R. C., & Dahlan, H. M. (2013). User experience: challenges and opportunities.
Austin, B. A. (1989). Immediate seating: A look at movie audiences. Wadsworth Publishing Company.
AdvertisingAge(2014)The Future of TV? No More Commercial, Says Netflix Chief Product Office http://adage.com/article/media/future-tv-commercials-Netflix-exec/293275/
Kim, M. S., Kim, E., Hwang, S., Kim, J., & Kim, S. (2017). Willingness to pay for over-the-top services in China and Korea. Telecommunications Policy, 41(3), 197-207.
Gomez-Uribe, C. A., & Hunt, N. (2015). The Netflix recommender system: Algorithms, business value, and innovation. ACM Transactions on Management Information Systems (TMIS), 6(4), 1-19. https://doi.org/10.1145/2843948
Gomez-Uribe, C. A., & Hunt, N. (2016). The Netflix Recommender System: Algorithms, Business Value, and Innovation. ACM Trans. Manage. Inf. Syst., 6(4), Article 13. https://doi.org/10.1145/2843948
Hassenzahl, M. (2005). The Thing and I: Understanding the Relationship Between User and Product. In (Vol. 3, pp. 31-42).
Hassenzahl, M., & Tractinsky, N. (2006). User experience - A research agenda. Behaviour and Information Technology, 25, 91 – 97.
Herlocker, J. L., Konstan, J. A., Borchers, A., & Riedl, J. (1999). An algorithmic framework for performing collaborative filtering Proceedings of the 22nd annual international ACM SIGIR conference on Research and development in information retrieval, Berkeley, California, USA.
Herlocker, J. L., Konstan, J. A., Terveen, L. G., & Riedl, J. T. (2004). Evaluating collaborative filtering recommender systems. ACM Trans. Inf. Syst., 22(1), 5–53.
Joanna Briggs Institute. (2014). The Joanna Briggs Institute reviewers’ manual 2014: Methodology for JBI mixed methods systematic reviews.
Li, F., Chen, M., Garrett, J. J., & Rubinoff, R. (2011). The Literature Review of User Experience in Website.
Li, L., Chu, W., Langford, J., & Wang, X. (2011). Unbiased offline evaluation of contextual-bandit-based news article recommendation algorithms Proceedings of the fourth ACM international conference on Web search and data mining, Hong Kong, China.
Obrist, M., Roto, V., & Väänänen-Vainio-Mattila, K. (2009). User experience evaluation: do you know which method to use?. In CHI'09 Extended Abstracts on Human Factors in Computing Systems, 2763-2766.
Pajkovic, N. (2021). Algorithms and taste-making: Exposing the Netflix Recommender System's operational logics. Convergence, 28(1), 214-235.
Schafer, J. B., Frankowski, D., Herlocker, J., & Sen, S. (2007). Collaborative Filtering Recommender Systems. In P. Brusilovsky, A. Kobsa, & W. Nejdl (Eds.), The Adaptive Web: Methods and Strategies of Web Personalization pp. 291-324.
Stern, C., Lizarondo, L., Carrier, J., Godfrey, C., Rieger, K., Salmond, S., Apóstolo, J., Kirkpatrick, P., & Loveday, H. (2020). Methodological guidance for the conduct of mixed methods systematic reviews. JBI Evidence Synthesis, 18(10), 2108–2118
Rose, P. (2007). Mediators of the association between narcissism and compulsive buying: the roles of materialism and impulse control. Psychology of addictive behaviors, 21(4), 576.
Vermeeren, A., Law, L.-C., Roto, V., Obrist, M., Hoonhout, J., & Väänänen, K. (2010). User experience evaluation methods: Current state and development needs. https://doi.org/10.1145/1868914.1868973
Väänänen-Vainio-Mattila, K., Roto, V., & Hassenzahl, M. (2008). Now let's do it in practice: user experience evaluation methods in product development CHI '08 Extended Abstracts on Human Factors in Computing Systems, 3961-3964
Stenovec T (2016) Netflix has discovered something profound about people around the world. Business Insider Available at: https://www.businessinsider.com/netflix-global-recommendation-system-2016-2(accessed 12 May 2020).
Wasko J and Meehan ER (2020) A Companion to Television. Hoboken, NJ: John Wiley & Sons.Wells WD (1975) Psychographics: A critical review. Journal of Marketing Research 12(2): 196–213.Welles O (Director) (1941) Citizen Kane [Film]. Mercury Productions.
Chris Alvino and Justin Basilico (2015) Learning a Personalized Homepage. Retrieved from: https://netflixtechblog.com/learning-a-personalized-homepage-aa8ec670359a
Foehr, Ulla G (2006) Media multitasking among American youth: Prevalence, predictors and pairings.Menlo Park, CA: Henry J. Kaiser Family Foundation.
Faber, R. J., O’Guinn, T. C., & Hardy, A. P. (1988). Art films in the suburbs: A comparison of popular and art film audiences. In B. A. Austin (Ed.), Current Research in Film: Audiences, Economics, and Law, Vol. 4. Norwood, NJ: Ablex,45–53.
Ashok Chandrashekar, Fernando Amat, Justin Basilico and Tony Jebara (2017) Artwork Personalization at Netflix. Retrieved from https://netflixtechblog.com/artwork-personalization-c589f074ad76
Spangler T (2013) Netflix survey: Binge-watching is not weird or unusual. Available at: http://variety.com/2013/digital/news/netflix-survey-binge-watching-isnot-weird-or-unu-sual-1200952292/ (accessed 14 December 2013).
Susan Farrell (2017) UX Research Cheat Sheet. Retrieved from https://www.nngroup.com/articles/ux-research-cheat-sheet/
Rohrer, C (2022) When to Use Which User-Experience Research Methods. Nielsen Norman Group. Available at: https://www.nngroup.com/articles/which-uxresearch-methods/. Accessed 3 September 2022
Palmgreen, P., Cook, P. L., Harvill, J. G., & Helm, D. M. (1988). The motivational framework of moviegoing: Uses and avoidances of theatrical films. Current research in film: Audiences, economics, and law, 4, 1-23.
Yiran Li (2022) Artificial intelligence regional cross-border e-commerce shopping guide platform information personalized recommendation algorithm.https://doi.org/10.1145/3570236.3570248
中央通訊社(1993)。大台北地區民眾觀賞電影行為暨滿意度之研究。台北:電影事業發展基金會。
王立天、 程奕璇、李御璽與顏秀珍 ( 2022 )。內容導向電影推薦之研究。資訊電子學刊,10(1),149-166.
王紫綺 ( 2018 )。 用戶體驗檢核流程的設計與驗證。國立臺灣科技大學,台北市。
李有仁、張書勳、林俊成(2011)。影音分享網站使用者意圖之研究,資訊管理學報,18:53-75。
李欣岳(2015)。家數行動影音和電商新革命。Cheers 快樂工作人雜誌,172,40-41。
李姿億(2017)。台灣OTT影劇產業分析與使用者使用行為調查。國立台灣大學管理學院商學研究所碩士論文。
李智明、紀彥斌(2021)。消費者選擇影音服務平台之關鍵因素-使用層級分析法。輔仁管理評論,28(2),23-54。
李克珍(1986)。大學生到電影院看電影的動機與行為研究。輔仁大學大眾傳播研究所碩士論文。
林佑宣 ( 2012 )。 推薦系統中意外發現之觸發及其對使用者滿意度影響。國立臺灣大學資訊管理學系學位論文, 2012, 1-74。
許文貞(2015)。從電視走向其他裝置影視內容大翻轉跨螢黏更緊。數位時代,253,146-147。
許書銘、李卓勳(2015)。大數據處理與使用行為分析之應用-電視節目推薦系統。電工通訊季刊,(4),62-73。
許郁苓(2017)。臺灣線上影集平台發展趨勢研究。崑山科技大學媒體藝術研究所碩士論文。
吳郁潔(2022)。Netflix的推薦系統對顧客持續參與意圖之影響。元智大學經營管碩士論文。
蔣孟庭(2021)。使用者經驗對串流平台Netflix的品牌形象、品牌情感、品牌信任及品牌忠誠度之影響。碩士論文,淡江大學大眾傳播學系碩士論文
陳孜韋 ( 2017 )。影音內容及行動裝置與收視行為的關係之研究。國文化大學。臺灣博碩士論文知識加值系統,台北市。
陳宗天、王俐涵(2018)。推薦系統之研究內涵與主要研究議題。Electronic Commerce Studies,16(2),161-188。
劉菊芬(2015)。巨量資料技術於推薦系統之創新應用 --以Netflix 為例〔碩士論文,國立臺灣師範大學〕。
賴禹心、鄭宇庭、蘇志雄(2020)。使用OTT影音平台的關鍵因素與行為模式-以YouTube為例。Journal of Data Analysis,15(5),21-43。
簡堉蒨(2023)。網路影音偏好者分析〔博士論文,國立屏東大學〕。
楊舜慧、張哲豪、林玉凡(2014)。新媒體閱聽行為效果指標之建構與行銷效益評估,《2014 創新研究國際學術研討會》,臺北市:國立政治大學。
翁秀琪(1996)。《大眾傳播理論與實證》。台北:三民書局。
傅珮晴(2022)。Netflix 為何讓你欲罷不能一直追?揭開黏住觀眾眼球的「封面演算法」,檢索日期:2022年4月25日,檢自:https://www.bnext.com.tw/article/68756/netflix-cover-pic-ifan