研究生: |
王敬瑋 Wang, Ching-Wei |
---|---|
論文名稱: |
在快速旋轉下非共振雷德堡玻色愛因斯坦凝聚態的渦漩結構-在李黃楊量子修正項的作用下 Vortex structures in a rotating Rydberg-dressed Bose-Einstein condensate with Lee-Huang-Yang quantum correction |
指導教授: |
吳文欽
Wu, Wen-Chin |
學位類別: |
碩士 Master |
系所名稱: |
物理學系 Department of Physics |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 英文 |
論文頁數: | 38 |
英文關鍵詞: | Vortex lattice, Rydberg-dressed BEC, Lee-Huang-Yang quantum correction, trapping effect |
DOI URL: | http://doi.org/10.6345/NTNU202100363 |
論文種類: | 學術論文 |
相關次數: | 點閱:153 下載:23 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Motivated by recent success of the Lee-Huang-Yang (LHY) quantum correction on dipolar condensates, I numerically studied a fast rotating quasi-two-dimensional Rydberg-dressed Bose-Einstein condensate (BEC) where LHY correction has been taken into account. In a rotating Rydberg-dressed BEC of reduced dimensionality, I show that there is room to tune the LHY coupling against the long- and short-range interactions. The competition between the LHY coupling and the long-/short-range interaction then results in rich phase diagrams for the vortex lattice structures. Most of results can be deemed in the context of superfluid (SF)-supersolid (SS) transition. In particular, I propose that trapping effect of the SS triangles or grids can lead to the clustering of multiple vortices. I have provided a way to estimate the number of vortices clustered in the SS lattice.
References
[1] Bose, S. N. (1924) Plancks gesetz und Lichtquantenhypothese. Zeitsshrift fur Physik, 26,178-181.
[2] Einstein, A. (1925) Quantentheorie de Einatomigen Idealen Gases. Sitzungsberichte der Preussischen Akademie der Wissenschaften, 1, 3-14.
[3] Thorndike, A. S. & Evans, J. (2007) Quantum Mechanics at the Crossroads: New Perspectives from history, Philosophy, and Physics. Springer, Berlin.
[4] Lévy, L.-P. (2000b). Ginzburg-Landau Theory. In Magnetism and Superconductivity (pp. 285–307). Springer Berlin Heidelberg.
[5] Pethick, C. J., & Smith, H. (2008). Bose–Einstein Condensation in Dilute Gases. Cambridge University Press.
[6] Kapitza, P. (1938) Viscosity of Liquid Helium Below the λ-point. Nature, 141, 74.
[7] London, F. (1938) The λ-phenomenon of Liquid Helium and the Bose-Einstein Degeneracy. IJI.
[8] Onsager, L. (1949). Statistical hydrodynamics. Il Nuovo Cimento, S2, 279–287.
[9] Feynman, R. P. (1955). Chapter II Application of Quantum Mechanics to Liquid Helium. In Progress in Low Temperature Physics (pp. 17–53). Elsevier.
[10] TISZA, L. (1938). Transport Phenomena in Helium II. Nature, 3577, 913–913.
[11] Landau, L. (1941). Theory of the Superfluidity of Helium II. Physical Review, 4, 356–358.
[12] Abo-Shaeer, J. R., Raman, C., Vogels, J. M., & Ketterle, W. (2001). Observation of Vortex Lattices in Bose-Einstein Condensates. Science, 5516, 476–479.
[13] Abrikosov, A A. Magnetic properties of superconductors of the second group. United States.
[14] Balibar, S. (2017). Laszlo Tisza and the two-fluid model of superfluidity. Comptes Rendus Physique, 9–10, 586–591.
[15] Feder, D. L., Svidzinsky, A. A., Fetter, A. L., & Clark, C. W. (2001). Anomalous Modes Drive Vortex Dynamics in Confined Bose-Einstein Condensates. Physical Review Letters, 4, 564–567.
[16] Tsubota, M., Kasamatsu, K., & Ueda, M. (2002). Vortex lattice formation in a rotating Bose-Einstein condensate. Phys. Rev. A 100, 023625.
[17] Tonini, G., Werner, F., & Castin, Y. (2006). Formation of a vortex lattice in a rotating BCS Fermi gas. The European Physical Journal D, 2, 283–294.
[18] Li, Y., Geißler, A., Hofstetter, W., & Li, W. (2018). Supersolidity of lattice bosons immersed in strongly correlated Rydberg dressed atoms. Phys. Rev. A 97, 023619.
[19] Saccani, S., Moroni, S., & Boninsegni, M. (2012). Excitation Spectrum of a Supersolid. Phys. Rev. Lett. 108, 175301.
[20] Kunimi, M., & Kato, Y. (2012a). Mean-field and stability analyses of two-dimensional flowing soft-core bosons modeling a supersolid. Phys. Rev. B 86, 060510(R).
[21] Macrì, T., Maucher, F., Cinti, F., & Pohl, T. (2013). Elementary excitations of ultracold soft-core bosons across the superfluid-supersolid phase transition. Phys. Rev. A 87, 061602(R).
[22] Ancilotto, F., Rossi, M., & Toigo, F. (2013). Supersolid structure and excitation spectrum of soft-core bosons in three dimensions. Phys. Rev. A 88, 033618.
[23] Tommaso. (9 C.E.). Ground State and Excitation Properties of Soft-Core Bosons | SpringerLink. Journal of Low Temperature Physics.
[24] Putra, A., Salces-Cárcoba, F., Yue, Y., Sugawa, S., & Spielman, I. B. (2020). Spatial Coherence of Spin-Orbit-Coupled Bose Gases. Phys. Rev. Lett. 124, 053605. [25] Petter, D., Natale, G., van Bijnen, R. M. W., Patscheider, A., Mark, M. J., Chomaz, L., & Ferlaino, F. (2019). Probing the Roton Excitation Spectrum of a Stable Dipolar Bose Gas. Phys. Rev. Lett. 122, 183401.
[25] Hertkorn, J., Schmidt, J. N., Böttcher, F., Guo, M., Schmidt, M., Ng, K. S. H., ... & Pfau, T. (2020). Density Fluctuations across the Superfluid-Supersolid Phase Transition in a Dipolar Quantum Gas. arXiv e-prints, arXiv-2009.
[26] Natale, G., van Bijnen, R. M. W., Patscheider, A., Petter, D., Mark, M. J., Chomaz, L., & Ferlaino, F. (2019). Excitation Spectrum of a Trapped Dipolar Supersolid and Its Experimental Evidence. Phys. Rev. Lett. 123, 050402.
[27] Chomaz, L., Petter, D., Ilzhöfer, P., Natale, G., Trautmann, A., Politi, C., Durastante, G., van Bijnen, R. M. W., Patscheider, A., Sohmen, M., Mark, M. J., & Ferlaino, F. (2019). Long-Lived and Transient Supersolid Behaviors in Dipolar Quantum Gases. Phys. Rev. X 9, 021012.
[28] Li, J.-R., Lee, J., Huang, W., Burchesky, S., Shteynas, B., Top, F. Ç., Jamison, A. O., & Ketterle, W. (2017). A stripe phase with supersolid properties in spin–orbit-coupled Bose–Einstein condensates. Nature, 7643, 91–94.
[29] Léonard, J., Morales, A., Zupancic, P., Esslinger, T., & Donner, T. (2017). Supersolid formation in a quantum gas breaking a continuous translational symmetry. Nature, 7643, 87–90.
[30] Tanzi, L., Maloberti, J. G., Biagioni, G., Fioretti, A., Gabbanini, C., & Modugno, G. (2019). Evidence of superfluidity in a dipolar supersolid from non-classical rotational inertia. arXiv, arXiv-1912.
[31] Ferrier-Barbut, I., Kadau, H., Schmitt, M., Wenzel, M., & Pfau, T. (2016). Observation of Quantum Droplets in a Strongly Dipolar Bose Gas. Phys. Rev. Lett. 116, 215301.
[32] Cinti, F., Cappellaro, A., Salasnich, L., & Macrì, T. (2017). Superfluid Filaments of Dipolar Bosons in Free Space. Phys. Rev. Lett. 119, 215302.
[33] Henkel, N., Nath, R., & Pohl, T. (2010). Three-Dimensional Roton Excitations and Supersolid Formation in Rydberg-Excited Bose-Einstein Condensates. Phys. Rev. Lett. 104, 195302.
[34] Pupillo, G., Micheli, A., Boninsegni, M., Lesanovsky, I., & Zoller, P. (2010). Strongly Correlated Gases of Rydberg-Dressed Atoms: Quantum and Classical Dynamics. Phys. Rev. Lett. 104, 223002.
[35] Cinti, F., Jain, P., Boninsegni, M., Micheli, A., Zoller, P., & Pupillo, G. (2010). Supersolid Droplet Crystal in a Dipole-Blockaded Gas. Phys. Rev. Lett. 105, 135301.
[36] Hsueh, C.-H., Lin, T.-C., Horng, T.-L., & Wu, W. C. (2012). Quantum crystals in a trapped Rydberg-dressed Bose-Einstein condensate. Phys. Rev. A 86, 013619.
[37] Hsueh, C.-H., Tsai, Y.-C., Wu, K.-S., Chang, M.-S., & Wu, W. C. (2013). Pseudospin orders in the supersolid phases in binary Rydberg-dressed Bose-Einstein condensates. Phys. Rev. A 88, 043646.
[38] Lee, T. D., Huang, K., & Yang, C. N. (1957). Eigenvalues and Eigenfunctions of a Bose System of Hard Spheres and Its Low-Temperature Properties. Physical Review, 6, 1135–1145.
[39] Chomaz, L., van Bijnen, R. M. W., Petter, D., Faraoni, G., Baier, S., Becher, J. H., Mark, M. J., Wächtler, F., Santos, L., & Ferlaino, F. (2018). Observation of roton mode population in a dipolar quantum gas. Nature Physics, 5, 442–446.
[40] Cidrim, A., dos Santos, F. E. A., Henn, E. A. L., & Macrì, T. (2018). Vortices in self-bound dipolar droplets. Phys. Rev. A 98, 023618.
[41] Lima, A. R. P., & Pelster, A. (2011). Quantum fluctuations in dipolar Bose gases. Phys. Rev. A 84, 041604(R).
[42] Gautam, S., & Adhikari, S. K. (2019). Limitation of the Lee–Huang–Yang interaction in forming a self-bound state in Bose–Einstein condensates. Annals of Physics, 167917.
[43] Boudjemâa, A. (2018). Fluctuations and quantum self-bound droplets in a dipolar Bose-Bose mixture. Phys. Rev. A 98, 033612.
[44] Zhang, Y.-C., Maucher, F., & Pohl, T. (2019). Supersolidity around a Critical Point in Dipolar Bose-Einstein Condensates. Phys. Rev. Lett. 123, 015301.
[45] Böttcher, F., Schmidt, J.-N., Wenzel, M., Hertkorn, J., Guo, M., Langen, T., & Pfau, T. (2019). Transient Supersolid Properties in an Array of Dipolar Quantum Droplets. Phys. Rev. X 9, 011051.
[46] Tanzi, L., Lucioni, E., Famà, F., Catani, J., Fioretti, A., Gabbanini, C., Bisset, R. N., Santos, L., & Modugno, G. (2019). Observation of a Dipolar Quantum Gas with Metastable Supersolid Properties. Phys. Rev. Lett. 122, 130405.
[47] Seydi, I., Abedinpour, S. H., Zillich, R. E., Asgari, R., & Tanatar, B. (2020). Rotons and Bose condensation in Rydberg-dressed Bose gases. Phys. Rev. A 101, 013628.
[48] McCormack, G., Nath, R., & Li, W. (2020). Dynamical excitation of maxon and roton modes in a Rydberg-dressed Bose-Einstein condensate. Phys. Rev. A 102, 023319.
[49] Henkel, N., Cinti, F., Jain, P., Pupillo, G., & Pohl, T. (2012). Supersolid Vortex Crystals in Rydberg-Dressed Bose-Einstein Condensates. Phys. Rev. Lett. 108, 265301.
[50] Essmann, U., & Träuble, H. (1967). The direct observation of individual flux lines in type II superconductors. Physics Letters A, 10, 526–527.
[51] Harada, K., Matsuda, T., Bonevich, J., Igarashi, M., Kondo, S., Pozzi, G., Kawabe, U., & Tonomura, A. (1992). Real-time observation of vortex lattices in a superconductor by electron microscopy. Nature, 6399, 51–53.
[52] Bishop, D. J. (1993). Heroic holograms. Nature, 6452, 209–209.
[53] Self-consistent field, with exchange, for beryllium. (1935). Proceedings of the Royal Society of London. Series A - Mathematical and Physical Sciences, 869, 9–33.
[54] Chin, C., Grimm, R., Julienne, P., & Tiesinga, E. (2010). Feshbach resonances in ultracold gases. Reviews of Modern Physics, 2, 1225–1286.
[55] Kadau, H., Schmitt, M., Wenzel, M., Wink, C., Maier, T., Ferrier-Barbut, I., & Pfau, T. (2016). Observing the Rosensweig instability of a quantum ferrofluid. Nature, 7589, 194–197.
[56] Xi, K.-T., & Saito, H. (2016). Droplet formation in a Bose-Einstein condensate with strong dipole-dipole interaction. Phys. Rev. A 93, 011604(R).
[57] Bisset, R. N., & Blakie, P. B. (2015). Crystallization of a dilute atomic dipolar condensate. Phys. Rev. A 92, 061603(R).
[58] Pollack, S. E., Dries, D., Junker, M., Chen, Y. P., Corcovilos, T. A., & Hulet, R. G. (2009). Extreme tunability of interactions in a Li 7 Bose-Einstein Condensate. Phys. Rev. Letters, 102(9), 090402.
[59] Johnson, C. (2012). Numerical Solution of Partial Differential Equations by the Finite Element Method. Courier Corporation.
[60] Mathew, T. (2008). Domain Decomposition Methods for the Numerical Solution of Partial Differential Equations. Springer Science & Business Media.
[61] Kopriva, D. A. (2009). Implementing Spectral Methods for Partial Differential Equations. Springer Science & Business Media.
[62] Henkel, N. (2013) Rydberd-dressed Bose-Einstein condensates. Dissertation, Dresden University of Technology.
[63] Barenghi, C. F. & Parker N. G. (2016) A Primer on Quantum Fluids. Springer,
Switzeland.
[64] Loan, C. V. (1992). Computational Frameworks for the Fast Fourier Transform. SIAM.
[65] Gallemí, A., Roccuzzo, S. M., Stringari, S., & Recati, A. (2020). Quantized vortices in dipolar supersolid Bose-Einstein-condensed gases. Phys. Rev. A 102, 023322.
[66] Kasamatsu, K., Tsubota, M., & Ueda, M. (2003). Vortex Phase Diagram in Rotating Two-Component Bose-Einstein Condensates. Phys. Rev. Lett. 91, 150406.
[67] Kumar, R. K., Tomio, L., Malomed, B. A., & Gammal, A. (2017). Vortex lattices in binary Bose-Einstein condensates with dipole-dipole interactions. Phys. Rev. A 96, 063624.
[68] Ueda, M. (2010). Fundamentals and New Frontiers of Bose-Einstein Condensation. WORLD SCIENTIFIC.
[69] Hsueh, C.-H., Wang, C.-W., & Wu, W.-C. (2020). Vortex structures in a rotating Rydberg-dressed Bose-Einstein condensate with the Lee-Huang-Yang correction. Phys. Rev. A 102, 063307.
[70] Romero-Isart, O., Navau, C., Sanchez, A., Zoller, P., & Cirac, J. I. (2013b). Superconducting Vortex Lattices for Ultracold Atoms. Phys. Rev. Lett. 111, 145304.
[71] Laver, M., Forgan, E. M., Brown, S. P., Charalambous, D., Fort, D., Bowell, C., ... & Cubitt, R. (2006). Spontaneous symmetry-breaking vortex lattice transitions in pure niobium. Physical review letters, 96(16), 167002.