簡易檢索 / 詳目顯示

研究生: 吳和虔
論文名稱: 掃瞄式電子穿隧顯微鏡對有機分子在Ag/Ge(111)-(r3xr3)R30°表面的自組裝與光反應行為的研究
Scanning Tunneling Microscopy Study of Organic molecules Self-Organized and Photoisomerized on the Ag/Ge(111)-(r3xr3)R30° Surface
指導教授: 林景泉
學位類別: 博士
Doctor
系所名稱: 化學系
Department of Chemistry
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 151
中文關鍵詞: 掃瞄式電子穿隧顯微鏡有機發光分子自我組裝光化學異構化
英文關鍵詞: oligo-p-phenylenevinylene, Scanning tunneling microscopy, photoisomerization, Self-ordered
論文種類: 學術論文
相關次數: 點閱:187下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 有機分子在無機材料上所形成的自組裝單層吸附層行為近年來被研究的相當廣泛;特別是在有機發光材料(OLED)這方面,更是蓬勃發展,其中共軛高分子poly(para-phenylene vinlyene) (PPV)以及其寡鏈分子oligo-para-phenylenevinylene (OPV)更是研究的重心所在,主要是這類分子的發光效率很高。但其在表面上的自組裝行為與表面異構化光反應機制尚未非常清楚,引起我們想作進一步的探討。
    本論文主要利用掃瞄式電子穿隧顯微鏡(STM),來研究這類有機發光分子在Ag/Ge(111)-(r3xr3)R30°表面上自我組裝與光化學異構化行為。而有機分子則是選用不同的OPV的最小單元來作為研究的有機分子,分別是:順式,與反式-二苯乙烯(trans-, cis-, stilbene)、順,順式,與反,反式-對二苯乙烯基苯(trans,tran-, cis,csi-, distyrylbenzene)、順式,與反式-偶氮苯(trans-, cis-, azobenzene)等。利用這些最小的單元分子來研究其在表面上的分子自我組裝跟表面異構化光反應機制。
    經研究結果發現,三個有機分子均可以在表面上形成整齊規則排列,主要原因是因為我們選用的Ag/Ge(111)-(r3xr3)R30°表面,其單位晶格在表面銀原子所聚集形成的載體距離(6.7 Å)幾乎等於這些多苯環有機分子的兩個苯環中心間距離,因此才可以使這些有機分子在表面上自組裝成整齊的排列。而在表面異構化光反應機制部分,順式與反式的二苯乙烯,可以經由暴露在不同波長的光下,通過雙激子(biexcition)的方式,在表面上成對翻轉(pairwise),來控制其順反式結構。但是對於相同的碳碳雙鍵分子,順,順式與,反,反式-對二苯乙烯基苯(trans,tran-,cis,csi-, distyrylbenzene)而言,因為一次要三個激子(triexcition)聚在一起機率太低,另外即使相聚在一起後要進行三分子翻轉時,也會因為空間立體障礙過大而無法進行異構化反應。而對於順式與反式-偶氮苯而言,則是因為氮氮雙鍵跟表面的作用力太強,使得吸收光子後,電子組態由基態躍遷至激發態,也會很快的釋出能量而回到基態,而無法進行異構化反應。

    Self-ordered monolayers formed by organic molecules on semiconductor substrates are of considerable value in various technical applications. In particular, the ordering organic molecules on surface is crucial to charge transport between molecules, charge injection, wetting, friction, and optical properties. The surface-induced order of organic molecules can also affect the bulk over comparatively large distances, influencing their structure and electrooptical properties. Thus, understanding how functionalized organic molecules order at surfaces is crucial for optimizing their use in the application. Scanning tunneling microscopy (STM) is a powerful method to resolve these issues, because it allows sub-molecular resolution imaging of molecules adsorbed on a surface. This tactics permits an insight into the conformational, mechanical and electronic structure and thus functionalities of the molecules.

    In this thesis, the specially chosen shortest oligo-p-phenylenevinylene (OPV) molecules such as stilbene, distyrylbenzene, and azobenzene, acting as model systems for molecular nanotechnology, are reviewed. The presented studies focus on self-ordered behavior, and the photoisomerization mechanism on the Ag/Ge(111)-(r3xr3)R30° (referred to as Ag/Ge(111)-r3 hereafter) surface.

    The atomic structure of the Ag/Ge(111)-r3, called inequivalent triangles (IET) model, has been found in our STM images which is different from the widely accepted honeycomb chained triangle (HCT) model before. Furthermore, the result of the density functional theory (DFT) calculation also shows that the IET structure is 0.35 eV energetically more stable than the HCT model.

    The adsorption and desorption of stilbene on Ag/Ge(111)-r3 were investigated by using low energy electron diffraction (LEED), temperature programmed desorption (TPD), STM, and DFT. cis- stilbenes form a (2×1) overlayer structure on Ag/Ge(111)-r3 at a coverage of ~ 1 ML. The STM images show parallel strips with three equivalent directions, indicating a self-ordered molecular structure. The TPD traces fit the half-order kinetics for molecular desorption of stilbene from Ag/Ge(111)-r3 with desorption energies of 20.1 (cis-) and 21.3 kcal/mol (trans-), which are comparable with the calculated values using the DFT method. A plausible explanation for the stilbene desorption process on Ag/Ge(111)-r3 is proposed and discussed.

    The adsorption and self-organized monolayer of trans, trans-distyrylbenzene (tt-DSB) and cis, cis-distyrylbenzene (cc-DSB) on Ag/Ge(111)-r3 were studied by STM. High-resolution images allow identification of internal structure of individual tt-DSB molecules with three phenyl rings and their molecular arrangements on the Ag/Ge(111)-r3 surface. The lattice match makes Ag/Ge(111)-r3 an ideal substrate for tt-DSB self-organization and formation of (3 × 1) overlayer unit cell. The structural model and the molecule registry, corresponding to STM images for the adlayers of tt-DSB on Ag/Ge(111)-r3, are proposed and discussed. For cc-DSB adsorption on Ag/Ge(111)-r3, uniform molecular overlayers with two discernible molecular images corresponding to two major types of cc-DSB conformers were observed. The photoisomerization of DSB is not observed to take place at this surface because of two reasons as follows:the triexciton-assisted photoisomerization is hard to happen, and the molecule is constrained by the steric hindrance imposed by neighboring molecules.

    The interfacial structures of azobenzene on Ag/Ge(111)-r3 were studied by STM. High-resolution images allow the identification of individual molecules, with trans-azobenzene (TAB) appearing with a distinctive dumbbell shape. From in situ observation of the substrate lattice, the TAB monolayers were found to form a (2 × 1) structure. The interaction between TAB and the substrate plays the controlling role in influencing the structure of the TAB overlayers. A model for the unit cell of TAB monolayers is proposed and discussed. In the case of the photoisomerization, the surface quenching lifetime is too short so that the photoisomerization is hard to proceed at this highly coupling adsorbate-surface system.

    摘要.............. I ABSTRACT.............. III TABLE OF CONTENTS.............. VII CHAPTER 1 INTRODUCTION.............. 1 1.1 INTRODUCTION.............. 1 1.2 ADSORPTION AND SELF-ORGANIZATION OF TRANS-STILBENE ON THE AG/GE(111)-r3 SURFACE.............. 5 1.3 PHOTOISOMERIZATION BEHAVIOR OF STILBENE.............. 6 Figure Captions:.............. 11 CHAPTER 2 EXPERIMENTAL SECTION.............. 13 2.1 APPARATUS.............. 13 2.2 SAMPLES.............. 15 Stilbene .............. 15 Distyrylbenzene.............. 17 Azobenzene.............. 17 Figure Captions:.............. 22 CHAPTER 3 ATOMIC STRUCTURE OF THE AG/GE(111)-r3 SURFACE.............. 23 3.1 INTRODUCTION.............. 23 3.2 RESULTS AND DISCUSSION.............. 25 3.3 CONCLUSION.............. 30 Figure Captions:.............. 39 CHAPTER 4 ADSORPTION AND DESORPTION OF STILBENE FROM THE AG/GE(111)-r3 SURFACE.............. 41 4.1 INTRODUCTION.............. 41 4.2 THE GROWTH OF AG MONOLAYER ON GE(111)-C(2×8) AND ITS STRUCTURE CHARACTERIZATION BY LEED.............. 44 4.3 STILBENE ADSORPTION ON THE AG/GE(111)-r3 SURFACE.............. 46 4.4 STILBENE DESORPTION FROM THE AG/GE(111)-r3 SURFACE.............. 49 4.5 DESORPTION KINETICS AND MECHANISM OF STILBENE ON THE AG/GE(111)-r3 SURFACE.............. 54 4.6 CONCLUSIONS.............. 58 Figure Captions:.............. 73 CHAPTER 5 A STM STUDY OF DISTYRYLBENZENE ON THE AG/GE(111)-r3 SURFACE.............. 77 5.1 INTRODUCTION.............. 77 5.2 STRUCTURE CHARACTERIZATION OF THE AG/GE(111)-r3 SURFACE.............. 78 5.3 ADSORPTION AND SELF-ORGANIZATION OF TRANS,TRANS-DISTYRYLBENZENE ON THE AG/GE(111)-r3 SURFACE.............. 78 5.4 ADSORPTION AND SELF-ORGANIZATION OF CIS, CIS-DISTYRYLBENZENE ON THE AG/GE(111)-r3 SURFACE.............. 86 5.5 PHOTOISMOERIZATION BEHAVIOR OF DISTYRYLBENZENE.............. 89 5.6 CONCLUSIONS.............. 90 Figure Captions:.............. 101 CHAPTER 6 SUPRAMOLECULAR ASSEMBLIES OF AZOBENZENE ON THE AG/GE(111)-r3 SURFACE.............. 103 6.1 INTRODUCTION.............. 103 6.2 ADSORPTION AND SELF-ORGANIZATION OF TRANS-AZOBENZENE ON THE AG/GE(111)-r3 SURFACE.............. 105 6.3 REGISTRY AND THE UNIT CELL STRUCTURE OF TRANS-AZOBENZENE SELF-ORGANIZED ON THE AG/GE(111)-r3 SURFACE.............. 111 6.4 ADSORPTION OF CIS-AZOBENZENE ON THE AG/GE(111)-r3 SURFACE.............. 112 6.5 PHOTOISOMERIZATION BEHAVIOR OF TRANS-CIS AZOBENZENE ON THE AG/GE(111)-r3 SURFACE.............. 114 6.6 CONCLUSIONS.............. 118 Figure Captions:.............. 127 REFERENCE:.............. 131

    (1) Azumi, R.; Gotz, G.; Debaerdemaeker, T.; Bauerle, P. Chem. Eur. J. 2000, 6, 735.
    (2) Cyr, D. M.; Venkataraman, B.; Flynn, G. W. Chem. Mater. 1996, 8, 1600.
    (3) Feyter, S. D.; Schryver, F. D. Chem. Soc. Rev. 2003, 32, 139.
    (4) Gimzewski, J. K.; Joachim, C. Science 1999, 283, 1683.
    (5) Donhauser, Z. J.; Mantooth, B. A.; Kelly, K. F.; Bumm, L. A.; Monnell, J. D.; Stapleton, J. J.; Price, D. W.; Rawlett, A. M.; Allara, D. L.; Tour, J. M. Conductance Switching in Single Molecules Through Conformational Changes, 2001; Vol. 292; pp 2303.
    (6) Moresco, F.; Meyer, G.; Rieder, K. H.; Tang, H.; Gourdon, A.; Joachim, C. Phys. Rev. Lett. 2001, 86, 672.
    (7) Feringa, B. L. 2002.
    (8) Jakubiak, R.; Collison, C. J.; Wan, W. C.; Rothberg, L. J.; Hsieh, B. R. J. Phys. Chem. 1999, 103, 2394.
    (9) Nguyen, T.-Q.; Doan, V.; Schwartz, B. J. J. Chem. Phys. 1999, 110, 4068.
    (10) Bao, Z.; Bulovic, V.; Holmes, A. B. MRS Bulletin 2002, 441.
    (11) Rau, H. Photoreactive Organic Thin Films 2002.
    (12) Wu, H. C.; Chou, L.-W.; Wang, L.-C.; Lee, Y.-R.; Wei, C.-M.; Jiang, J.-C.; Su, C.; Lin, J.-C. Accepted by J. Phys. Chem. C 2008.
    (13) Tsai, C.-S.; Su, C.; Wang, J.-K.; Lin, J.-C. Langmuir 2003, 19, 822.
    (14) Tsai, C.-S.; Wang, J.-K.; Skodje, R. T.; Lin, J.-C. J. Am. Chem. Soc. 2005, 127, 10788.
    (15) Wu, H. C.; Tsai, C.-S.; Chou, L.-W.; Lee, Y.-R.; Jiang, J. C.; Su, C.; Lin, J.-C. Langmuir 2007, 23, 12521.
    (16) Kimura, M.; Okumura, A.; Miyamura, K.; Gohshi, Y. Jpn. J. Appl. Phys 1995, 34, 3642.
    (17) Waldeck, D. H. Chemical Reviews 1991, 91, 415.
    (18) Gorner, H.; Kuhn, H. J. Adv. Photochem. 1995, 19.
    (19) Han, W. G.; Lovell, T.; Liu, T.; Noodleman, L. Chem. Phys. Chem. 2002, 3, 167.
    (20) Wang, L.-C.; Lin, J.-C. National Taiwan Normal University Master Thesis 2004.
    (21) Su, C.; Song, K. J.; Wang, Y. L.; Lu, H. L.; Chuang, T. J.; Lin, J. C. J. Chem. Phys. 1997, 107, 7543.
    (22) Aizawa, H.; Tsukada, M.; Sato, N.; Hasegawa, S. Surf. Sci. 1999, 429, L509.
    (23) Campbell, T. W.; McDonald, R. N. J. Org. Chem. 1959, 24, 1246.
    (24) Frisch, M. J. F., M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M.; A.; Cheeseman, J. R. M., J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant,; J. C.; Millam, J. M. I., S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi,; M.; Scalmani, G. R., N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara,; M.; Toyota, K. F., R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.;; Kitao, O. N., H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J.; B.; Bakken, V. A., C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev,; O.; Austin, A. J. C., R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma,; K.; Voth, G. A. S., P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich,; S.; Daniels, A. D. S., M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.;; Raghavachari, K. F., J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford,; S.; Cioslowski, J. S., B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi,; I.; Martin, R. L. F., D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara,; A.; Challacombe, M. G., P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.;; Gonzalez, C. P., J. A. In Gaussian 03, Revision B.03,; Gaussian, Inc.: Wallingford, CT,, 2004.
    (25) Choi, C. H.; Kertesz, M. J. J. Phys. Chem. A 1997, 101, 3823.
    (26) Kwasniewski, S. P.; Claes, L.; Francois, J.-P.; Deleuze, M. S. J. Chem. Phys. 2003, 118, 7823.
    (27) Satzger, H.; Sporlein, S.; Root, C.; Wachtveitl, J.; Zinth, W.; Gilch, P. Chem. Phys. Lett. 2003, 372, 216.
    (28) Durr, H.; Bouas-Laurent, H. Photochromism: Molecules and Systems; Elsevier Science, 2003.
    (29) Spence, D. J.; Tear, S. P. Surf. Sci. 1998, 398, 91.
    (30) Zhang, H. M.; Uhrberg, R. I. G. Surf. Sci. 2003, 546, 789.
    (31) Sato, N.; Nagao, T.; Hasegawa, S. Surf. Sci. 1999, 442, 65.
    (32) Zhang, H. M.; Gustafsson, J. B.; Johansson, L. S. O. Phys. Rev. B 2006, 74, 201304.
    (33) Hammar, M.; Gothelid, M.; Karlsson, U. O.; Flodstrom, S. A. Phys. Rev. B 1993,
    47, 15669.
    (34) Huang, H.; Over, H.; Tong, S. Y.; Quinn, J.; Jona, F. Phys. Rev. B 1994, 49, 13483.
    (35) Zhang, H. M.; Balasubramanian, T.; Uhrberg, R. I. G. Phys. Rev. B 2001, 63, 195402.
    (36) Sasaki, N.; Watanabe, S.; Aizawa, H.; Tsukada, M. Surf. Sci. 2001, 493, 188.
    (37) Sasaki, N.; Watanabe, S.; Tsukada, M. Phys. Rev. Lett. 2002, 88, 046106.
    (38) Tajiri, H.; Sumitani, K.; Nakatani, S.; Nojima, A.; Takahashi, T.; Akimoto, K.; Sugiyama, H.; Zhang, X.; Kawata, H. Phys. Rev. B 2003, 68, 035330.
    (39) Uhrberg, R. I. G.; Zhang, H. M.; Balasubramanian, T.; Landemark, E.; Yeom, H. W. Phys. Rev. B 2002, 65, 081305.
    (40) Matsuda, I.; Morikawa, H.; Liu, C.; Ohuchi, S.; Hasegawa, S.; Okuda, T.; Kinoshita, T.; Ottaviani, C.; Cricenti, A.; D'Angelo, M. Phys. Rev. B 2003, 68, 85407.
    (41) Fukaya, Y.; Kawasuso, A.; Ichimiya, A. Physical Review B 2007, 75, 115424.
    (42) Kaji, H.; Kakitani, K. Surf. Sci. 2007, 601, 2491.
    (43) Kakitani, K.; Yoshimori, A.; Aizawa, H.; Tsukada, M. Surf. Sci. 2001, 493, 200.
    (44) Jeong, H.; Yeom, H. W.; Jeong, S. Phys. Rev. B 2007, 76, 85423.
    (45) Ding, Y. G.; Chan, C. T.; Ho, K. M. Phys. Rev. Lett. 1991, 67, 1454.
    (46) Nakamura, Y.; Kondo, Y.; Nakamura, J.; Watanabe, S. Surf. Sci. 2001, 493, 206.
    (47) Sakamoto, K.; Suzuki, T.; Mawatari, K.; Kobayashi, K.; Okabayashi, J.; Ono, K.; Ueno, N.; Oshima, M. Phys. Rev. B 2006, 73, 193303.
    (48) Fan, W. C.; Ignatiev, A. Phys. Rev. B 1989, 40, 5479.
    (49) Göhelid, M.; Hammar, M.; Karlsson, U. O.; Wigren, C.; LeLay, G. Phys. Rev. B 1995, 52, 14104.
    (50) Metcalfe, F. L.; Venables, J. A. Surf. Sci. 1996, 369, 99.
    (51) Venables, J. A.; Sugawara, A.; Metcalfe, F. L. Surf. Sci. 1997, 371, 420.
    (52) Chen, Q.; Frankel, D. J.; Richardson, N. V. Langmuir 2002, 18, 3219.
    (53) Chen, Q.; McDowall, A. J.; Richardson, N. V. Langmuir 2003, 19, 10164.
    (54) Azzam, W.; Cyganik, P.; Witte, G.; Buck, M.; Wöll, C. Langmuir 2003, 19, 8262.
    (55) Dubois, M.; Delerue, C.; Allan, G. Phys. Rev. B 2005, 71, 165435.
    (56) Seidel, C.; Soukopp, A.; Li, R.; Bäuerle, P.; Umbach, E. Surf. Sci. 1997, 374, 17.
    (57) Wang, M.; Bertmer, M.; Demco, D. E.; Blümich, B.; Litvinov, V. M.; Barthel, H. Macromolecules 2003, 36, 4411.
    (58) Kulkarni, A. P.; Tonzola, C. J.; Babel, A.; Jenekhe, S. A. Chem. Mater. 2004, 16, 4556.
    (59) Slayton, R. M.; Franklin, N. R.; Tro, N. J. J. Phys. Chem. 1996, 100, 15551.
    (60) Padovani, M.; Magnano, E.; Bertoni, G.; Spreafico, V.; Gavioli, L.; Sancrotti, M. Appl. Surf. Sci. 2003, 212-213, 213.
    (61) Sheerin, G.; Cafolla, A. A. Surf. Sci. 2005, 577, 211.
    (62) Sakamoto, K.; Uhrberg, R. I. G. Surf. Sci. Nanotech. 2004, 2, 210.
    (63) Dorko, M. J.; Bryden, T. R.; Garrett, S. J. J. Phys. Chem. B 2000, 104, 11695.
    (64) Backstrand, K. M.; Weibel, M. A.; Moision, R. M.; Curtiss, T. J. J. Chem. Phys. 2000, 112, 7209.
    (65) Nishimura, S. Y.; Gibbons, R. F.; Tro, N. J. J. Phys. Chem. B 1998, 102, 6831.
    (66) Van Ekeren, P. J.; Jacobs, M. H. G.; Offringa, J. C. A.; De Kruif, C. G. J. Chem. Thermodyn. 1983, 15, 409.
    (67) Vlieg, E.; Gon, A. W. D. v. d.; Veen, J. F. v. d.; Macdonald, J. E.; Norris, C. Surf. Sci. 1989, 209, 100.
    (68) Vlieg, E.; Fontes, E.; Patel, J. R. Phys. Rev. B 1991, 43, 7185.
    (69) Takahashi, T.; Nakatani, S.; Okamoto, N.; Ishikawa, T.; Kikuta, S. Jpn. J. Appl. Phys. 1988, 27, L753.
    (70) Su, C.; Lee, L. X.; Chen, C. F. Synthetic Metals 2003, 137, 865.
    (71) Solomon, J. L.; Madix, R. J.; Stohr, J. Surf. Sci 1991, 255, 12.
    (72) Solomon, J. L.; Madix, R. J.; Stohr, J. J. Phys. Chem. 1990, 93, 8379.
    (73) Liu, A. C.; Stohr, J.; Friend, C. M.; Madix, R. J. Surf. Sci 1990, 235, 107.
    (74) Hansma, P. K.; Tersoff, J. J. Appl. Phys. 1987, 61, R1.
    (75) Smith, D. P. E.; Horber, J. K. H.; Binnig, G.; Nejoh, H. Nature 1990, 344, 641.
    (76) Lackinger, M.; Muller, T.; Gopakumar, T. G.; Muller, F.; Hietschold, M.; Flynn, G. W. J. Phys. Chem. B 2004, 108, 2279.
    (77) Strohmaier, R.; Petersen, J.; Gompf, B.; Eisenmenger, W. Surf. Sci. 1998, 418, 91.
    (78) Wang, H.-W.; Chen, C.; Hsu, F.-C.; Shien, H.-C.; Wang, J. K.; Lin, S. H.; Hayashi, M. J. Chin. Chem. Soc. 2005, 52, 665.
    (79) Zhu, X. Annu. Rev. Phys. Chem 1994, 45, 113.
    (80) Comstock, M. J.; Levy, N.; Kirakosian, A.; Cho, J.; Lauterwasser, F.; Harvey, J. H.; Strubbe, D. A.; Frechet, J. M. J.; Trauner, D.; Louie, S. G.; Crommie, M. F. Phys. Rev. Lett. 2007, 99, 38301.
    (81) Turro, N. J. Modern Molecular Photochemistry; University Science Books, 1991.
    (82) Spano, F. C. J. Chem. Phys. 1991, 95, 1400.
    (83) Davidov, A. S. Theory of Molecular Excitons; Plenum, New York, 1971.
    (84) Frenkel, J. Phys. Rev. 1931, 37, 17.
    (85) Bohringer, M.; Morgenstern, K.; Schneider, W. D.; Berndt, R.; Mauri, F.; De Vita, A.; Car, R. Phys. Rev. Lett. 1999, 83, 324.
    (86) Bohringer, M.; Morgenstern, K.; Schneider, W. D.; Wuhn, M.; Woll, C. C.; Berndt, R. Surf. Sci 2000, 444, 199.
    (87) Weckesser, J.; De Vita, A.; Barth, J. V.; Cai, C.; Kern, K. Phys. Rev. Lett. 2001, 87, 96101.
    (88) Yokoyama, T.; Yokoyama, S.; Kamikado, T.; Okuno, Y.; Mashiko, S. Nature 2001, 413, 619.
    (89) Chen, Q.; Frankel, D. J.; Richardson, N. V. Langmuir 2002, 18, 3219.
    (90) Keeling, D. L.; Oxtoby, N. S.; Wilson, C.; Humphry, M. J.; Champness, N. R.; Beton, P. H. Nano lett. 2003, 3, 9.
    (91) Barlow, S. M.; Louafi, S.; Le Roux, D.; Williams, J.; Muryn, C.; Haq, S.; Raval, R. Langmuir 2004, 20, 7171.
    (92) Humblot, V.; Lorenzo, M. O.; Baddeley, C. J.; Haq, S.; Raval, R. J. Am. Chem. Soc 2004, 126, 6460.
    (93) Stepanow, S.; Lin, N.; Vidal, F.; Landa, A.; Ruben, M.; Barth, J. V.; Kern, K. Nano Lett. 2005, 5, 901.
    (94) Barth, J. V.; Weckesser, J.; Trimarchi, G.; Vladimirova, M.; De Vita, A.; Cai, C.; Brune, H.; Gunter, P.; Kern, K. J. Am. Chem. Soc 2002, 124, 7991.
    (95) Lorenzo, M. O.; Baddeley, C. J.; Muryn, C.; Raval, R. Nature 2000, 404, 376.
    (96) Barth, J. V.; Costantini, G.; Kern, K. Nature 2005, 437, 671.
    (97) Zhang, C.; Du, M. H.; Cheng, H. P.; Zhang, X. G.; Roitberg, A. E.; Krause, J. L. Phys. Rev. Lett. 2004, 92, 158301.
    (98) Ikeda, T.; Tsutsumi, O. Science 1995, 268, 1873.
    (99) Kirakosian, A.; Comstock, M. J.; Cho, J.; Crommie, M. F. Physical Review B 2005, 71, 113409.
    (100) Wang, Y.; Ge, X.; Schull, G.; Berndt, R.; Bornholdt, C.; Koehler, F.; Herges, R. J. Am. Chem. Soc 2008, 130, 4218.
    (101) Barth, J. V. Annu. Rev. Phys. Chem 2007, 58, 375.
    (102) Ciminelli, C.; Granucci, G.; Persico, M. Chemistry- A European Journal 2004, 10, 2327.
    (103) Ishikawa, T.; Noro, T.; Shoda, T. J. Chem. Phys. 2001, 115, 7503.
    (104) Fujino, T.; Arzhantsev, S. Y.; Tahara, T. J. Phys. Chem. A 2001, 105, 8123.
    (105) Lednev, I. K.; Ye, T. Q.; Matousek, P.; Towrie, M.; Foggi, P.; Neuwahl, F. V. R.; Umapathy, S.; Hester, R. E.; Moore, J. N. Chem. Phys. Lett. 1998, 290, 68.
    (106) Diau, E. W. G. J. Phys. Chem. A 2004, 108, 950.
    (107) Jung, T. A.; Schlittler, R. R.; Gimzewski, J. K. Nature 1997, 386, 696.
    (108) Chou, L.-W. in preparation

    無法下載圖示 本全文未授權公開
    QR CODE