簡易檢索 / 詳目顯示

研究生: 王芊茹
Wang, Chien-Ju
論文名稱: 咖啡因及可可鹼之攝取量對高齡者認知功能表現影響之探討-以美國NHANES 2011-2014年資料庫為例
Association of Caffeine and Theobromine Intakes with Cognitive Function Performance in Older Adults Cross-Sectional Study from National Health and Nutrition Examination Survey (NHANES) 2011–2014
指導教授: 李銘杰
Li, Ming-Chieh
口試委員: 李銘杰
Li, Ming-Chieh
胡益進
Hu, Yih-Jin
鄭其嘉
Cheng, Chi-Chia
口試日期: 2024/01/24
學位類別: 碩士
Master
系所名稱: 健康促進與衛生教育學系
Department of Health Promotion and Health Education
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 137
中文關鍵詞: 咖啡因可可鹼高齡者認知功能NHANES
英文關鍵詞: caffeine, theobromine, older adults, cognitive function, NHANES
研究方法: 橫斷面研究
DOI URL: http://doi.org/10.6345/NTNU202400281
論文種類: 學術論文
相關次數: 點閱:80下載:43
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 背景與目的:人口高齡化已是無可避免的全球趨勢,而隨著年齡的增長,衰老是不可避免的,世界衛生組織(World Health Organization, WHO)提及高齡者常見的病症之一為失智症。認知功能障礙為失智症最早之病程,因此如何預防及延緩,使其避免發展成失智症是我們必須關注的課題。飲食為預防認知功能障礙方式之一,而咖啡因及可可鹼已被證實具有神經保護作用,且兩者的化學結構非常相似,故本研究將兩者一併進行探討,因此本研究旨在瞭解60歲以上高齡者之咖啡因及可可鹼攝取量與認知功能之關聯性。
    方法:本研究為橫斷性研究,採用美國National Health and Nutrition Examination Survey (NHANES) 資料庫選取2011-2014年60歲以上高齡者之資料,共計2,524位。將其咖啡因及可可鹼攝取量利用四分位數分為四組:各認知功能表現(Consortium to Establish a Registry for Alzheimer’s Disease (CERAD)測驗、動物流暢度測驗、數字符號替換測驗)則利用中位數分為正常及異常二組。使用卡方檢定及邏輯斯迴歸分析,探討高齡者咖啡因及可可鹼攝取量之多寡對於其認知功能是否有所影響。
    結果:本研究2,524位60歲以上高齡者中,CERAD測驗正常為1,111位,異常為1,413位;動物流暢度測驗正常為1,231位,異常為1,293位;數字符號替換測驗正常為1,221位,異常為1,303位。當中女性、教育程度較高者、已婚/與伴侶同住者、家庭收入與貧困的比例≧1者、有飲酒者及有運動者之認知功能較高,而年齡較大者、高血壓患者、糖尿病患者、憂鬱症患者及吸菸者之認知功能則較低。經調整社會人口學特性與健康狀態變項後,發現攝取咖啡因、可可鹼或同時攝取咖啡因及可可鹼之第四分位數攝取量,對於高齡者各認知功能皆具有保護作用,但當中僅有咖啡因攝取量與CERAD測驗、可可鹼攝取量與數字符號替換測驗、咖啡因及可可鹼攝取量分組與CERAD測驗以及咖啡因及可可鹼攝取量分組與動物流暢度測驗達顯著意義。
    結論與建議:透過本研究可以發現,攝取較多的咖啡因及可可鹼時,認知功能較高且具有保護作用,且相對於僅有攝取咖啡因或可可鹼時,同時攝取兩者對於預防認知功能障礙具有加成作用。針對實務方面之建議為及早發現及早治療、關注高風險之族群以及在國內外建議攝取量之條件下,適量攝取咖啡因及可可鹼,以降低罹患認知功能障礙之風險;未來研究之建議為可以利用長期追蹤之方式,來瞭解各種攝取物質及情形對於認知功能之因果關係,或是採用臺灣健保資料庫以及國民營養健康調查來進行分析,除檢驗研究結果是否一致外,也能更加瞭解臺灣之現況。

    Background and objective: The aging of the population is an inevitable global trend, and with increasing age, aging becomes unavoidable. The World Health Organization (WHO) mentions dementia as one of the common conditions in the elderly. Cognitive impairment is the earliest stage of dementia, so understanding how to prevent and delay it to avoid its progression to dementia is a crucial issue.Diet is one of the ways to prevent cognitive impairment, and caffeine and theobromine have been proven to have neuroprotective effects. Since the chemical structures of caffeine and theobromine are very similar, this study aims to explore both substances simultaneously. The objective of this research is to understand the association between the intake of caffeine and theobromine in individuals aged 60 and above and cognitive function.
    Methods: This study is a cross-sectional research that utilized data from the United States National Health and Nutrition Examination Survey (NHANES) database, selecting information from individuals aged 60 and above for the years 2011-2014, totaling 2,524 participants. The caffeine and theobromine intake levels were categorized into four groups based on quartiles. Cognitive function performance, assessed through the Consortium to Establish a Registry for Alzheimer’s Disease (CERAD) test, Animal Fluency Test, and Digit Symbol Substitution Test, was dichotomized into normal and abnormal groups using the median. By employing chi-square tests and logistic regression analysis, this study aims to investigate whether the quantity of caffeine and theobromine intake among older adults has an impact on their cognitive function.
    Result: Among the 2,524 elderly people over 60 years old in this study, 1,111 were normal and 1,413 were abnormal in the CERAD test; 1,231 were normal and 1,293 were abnormal in the animal fluency test; 1,221 were normal and 1,303 were abnormal in the digit-symbol replacement test. Among them, women, those with a higher education level, those who are married/living with partners, those with a household income to poverty ratio ≧1, those who drink alcohol and those who exercise have better cognitive function, while those who are older and have high blood pressure Patients with diabetes, depression, and smokers have poorer cognitive function. After adjusting for sociodemographic characteristics and health status variables, it was observed that the fourth quartile intake of caffeine, theobromine, or both, had a protective effect on various cognitive functions in older adults. However, only the intake of caffeine was significantly associated with the CERAD test, the intake of theobromine with the Digit Symbol Substitution Test, and the grouping of caffeine and theobromine intake with the CERAD test and the Animal Fluency Test.
    Conclusion: Through this study, it can be observed that higher intake of caffeine and theobromine is associated with better cognitive function and has a protective effect. Moreover, simultaneous intake of both substances has an additive effect in preventing cognitive impairment compared to the intake of caffeine or theobromine alone. Practical recommendations include early detection and treatment, attention to high-risk populations, and, adhering to recommended intake levels domestically and internationally, consuming an appropriate amount of caffeine and theobromine to reduce the risk of cognitive impairment. Suggestions for future research involve utilizing long-term tracking to understand the causal relationship between various substances and cognitive function. Alternatively, using Taiwan's National Health Insurance database and the National Nutrition and Health Survey for analysis could provide insights into the consistency of research results and a deeper understanding of the situation in Taiwan.

    第一章 緒論 1 第一節 研究背景及動機 1 第二節 研究目的 5 第三節 研究問題 6 第四節 研究假設 6 第二章 文獻回顧 7 第一節 咖啡因與可可鹼 7 第二節 認知功能 11 第三節 社會人口學特性對認知功能之影響 17 第四節 健康狀態對認知功能之影響 21 第五節 攝取咖啡因及可可鹼對認知功能之影響 25 第三章 研究方法 35 第一節 研究設計與架構 35 第二節 研究對象 37 第三節 研究工具 39 第四節 研究變項定義 43 第五節 資料處理與統計分析 50 第四章 研究結果 52 第一節 社會人口學特性與認知功能表現之關係 52 第二節 健康狀態與認知功能表現之關係 62 第三節 攝取情形與認知功能表現之關係 72 第四節 咖啡因攝取量與認知功能表現之邏輯斯迴歸分析 77 第五節 可可鹼攝取量與認知功能表現之邏輯斯迴歸分析 90 第六節 咖啡因及可可鹼攝取量分組與認知功能表現之邏輯斯迴歸分析 102 第五章 討論 115 第一節 社會人口學特性與認知功能表現之關係 115 第二節 健康狀態與認知功能表現之關係 117 第三節 不同攝取情形與認知功能表現之關係 118 第四節 研究限制 122 第六章 結論與建議 123 第一節 結論 123 第二節 建議 125 參考文獻 127

    中華民國國家發展委員會(2022)。人口推估查詢系統-中華民國人口推估(2022年至2070年)報告。
    https://pop-proj.ndc.gov.tw/download.aspx?uid=70&pid=70
    立法院(2017)。議題研析-高齡社會對經濟發展影響之研析。
    https://www.ly.gov.tw/Pages/Detail.aspx?nodeid=6590&pid=170884
    台灣失智症協會(2022)。認識失智症。
    http://www.tada2002.org.tw/About/IsntDementia
    社團法人臺灣認知功能促進協會(2023)認知功能障礙。
    http://www.tcea-taiwan.com/TCEA/%e8%aa%8d%e7%9f%a5%e5%8a%9f%e8%83%bd%e9%9a%9c%e7%a4%99/
    衛生福利部(2004)。選購認清咖啡因含量,保障你我健康。
    https://www.mohw.gov.tw/cp-3204-21749-1.html
    衛生福利部(2017)。失智症診療手冊。臺北市:衛生福利部醫事司。
    謝旻珈(2022)。淺談輕度認知障礙-正常老化、輕度認知功能障礙與失智症的差異。榮總人月刊,2,1。
    https://wd.vghtpe.gov.tw/fm/files/11102%E6%A6%AE%E7%B8%BD%E4%BA%BA_%E8%AC%9D%E6%97%BB%E7%8F%88%E9%86%AB%E5%B8%AB_%E6%B7%BA%E8%AB%87%E8%BC%95%E5%BA%A6%E8%AA%8D%E7%9F%A5%E9%9A%9C%E7%A4%99.pdf
    Alzheimer's Association. (2022). Strongest risk factors for MCI.
    https://www.alz.org/media/Documents/alzheimers-facts-and-figures-special-report-2022.pdf
    Alzheimer's Association. (2023). Symptoms.
    https://www.alz.org/alzheimers-dementia/what-is-dementia/related_conditions/mild-cognitive-impairment
    Alzheimer's Disease International(ADI) . (2023). Dementia statistics.
    https://www.alzint.org/about/dementia-facts-figures/dementia-statistics/
    Alzheimer's Disease International(ADI) . (2023). Dementia facts & figures.
    https://www.alzint.org/about/dementia-facts-figures/
    Alzheimer's Disease International(ADI) . (2023). Risk factors and risk reduction.
    https://www.alzint.org/about/risk-factors-risk-reduction/
    Alzheimer's Research UK. (2023). What is mild cognitive impairment?.
    https://www.alzheimersresearchuk.org/dementia-information/types-of-dementia/mild-cognitive-impairment/
    Alzheimer's Research UK. (2023). What causes mild cognitive impairment?.
    https://www.alzheimersresearchuk.org/dementia-information/types-of-dementia/mild-cognitive-impairment/
    Alzheimer's Society. (2023). What is mild cognitive impairment?.
    https://www.alzheimers.org.uk/about-dementia/types-dementia/mild-cognitive-impairment-mci#content-start
    American Academy of Neurology(AAN) . (2018). Practice guideline update summary: Mild cognitive impairment.
    https://www.aan.com/Guidelines/home/GuidelineDetail/881
    American Psychological Association. (2018). Cognitive functioning definition
    https://dictionary.apa.org/cognitive-functioning
    Barone, J. J., & Roberts, H. (1984). Human consumption of caffeine. In Caffeine: Perspectives from recent research (pp. 59-73). Berlin, Heidelberg: Springer Berlin Heidelberg.
    Bøhn, S. K., Blomhoff, R., & Paur, I. (2014). Coffee and cancer risk, epidemiological evidence, and molecular mechanisms. Molecular nutrition & food research, 58(5), 915–930.
    https://doi.org/10.1002/mnfr.201300526
    Bruinsma, K., & Taren, D. L. (1999). Chocolate: food or drug?. Journal of the American Dietetic Association, 99(10), 1249-1256.
    Centers for Disease Control and Prevention(CDC) . (2017). NHANES -Cognitive Functioning Questionnaire (CFQ)- Component Description.
    https://wwwn.cdc.gov/Nchs/Nhanes/2011-2012/CFQ_G.htm
    Centers for Disease Control and Prevention(CDC) . (2023). About the National Health and Nutrition Examination Survey(NHANES).
    https://www.cdc.gov/nchs/nhanes/about_nhanes.htm
    Cleveland Clinic. (2023). How is mild cognitive impairment diagnosed?.
    https://my.clevelandclinic.org/health/diseases/17990-mild-cognitive-impairment
    Cleveland Clinic. (2023). Can I prevent mild cognitive impairment?.
    https://my.clevelandclinic.org/health/diseases/17990-mild-cognitive-impairment
    Corley, J., Jia, X., Kyle, J. A., Gow, A. J., Brett, C. E., Starr, J. M., McNeill, G., & Deary, I. J. (2010). Caffeine consumption and cognitive function at age 70: the Lothian Birth Cohort 1936 study. Psychosomatic medicine, 72(2), 206–214.
    https://doi.org/10.1097/PSY.0b013e3181c92a9c
    Cova, I., Leta, V., Mariani, C., Pantoni, L., & Pomati, S. (2019). Exploring cocoa properties: is theobromine a cognitive modulator?. Psychopharmacology, 236(2), 561–572.
    https://doi.org/10.1007/s00213-019-5172-0
    Crichton, G. E., Elias, M. F., & Alkerwi, A. (2016). Chocolate intake is associated with better cognitive function: The Maine-Syracuse Longitudinal Study. Appetite, 100, 126–132.
    https://doi.org/10.1016/j.appet.2016.02.010
    Czok G. (1974). Zur Frage der biologischen Wirksamkeit von Methylxanthinen in Kakaoprodukten [Biological effectiveness of methyl xanthines in cocoa products]. Zeitschrift fur Ernahrungswissenschaft, 13(4), 165–170.
    https://doi.org/10.1007/BF02021187
    Dong, X., Li, S., Sun, J., Li, Y., & Zhang, D. (2020). Association of Coffee,Decaffeinated Coffee and Caffeine Intake from Coffee with Cognitive Performance in Older Adults: National Health and Nutrition Examination Survey (NHANES) 2011-2014. Nutrients, 12(3), 840.
    https://doi.org/10.3390/nu12030840
    Driscoll, I., Shumaker, S. A., Snively, B. M., Margolis, K. L., Manson, J. E.,Vitolins, M. Z., Rossom, R. C., & Espeland, M. A. (2016). Relationships Between Caffeine Intake and Risk for Probable Dementia or Global Cognitive Impairment: The Women's Health Initiative Memory Study. The journals of gerontology. Series A, Biological sciences and medical sciences, 71(12), 1596–1602.
    https://doi.org/10.1093/gerona/glw078
    Eskelinen, M. H., & Kivipelto, M. (2010). Caffeine as a protective factor in dementia and Alzheimer's disease. Journal of Alzheimer's disease : JAD, 20 Suppl 1, S167–S174.
    https://doi.org/10.3233/JAD-2010-1404
    Gao, L., Ge, W., Peng, C., Guo, J., Chen, N., & He, L. (2022). Association between Dietary Theobromine and Cognitive Function in a Representative American Population: A Cross-Sectional Study. The journal of prevention of Alzheimer's disease, 9(3), 449–457.
    https://doi.org/10.14283/jpad.2022.39
    Gilbert R. M. (1984). Caffeine consumption. Progress in clinical and biological research, 158, 185–213.
    Grosso, G., Godos, J., Galvano, F., & Giovannucci, E. L. (2017). Coffee, Caffeine, and Health Outcomes: An Umbrella Review. Annual review of nutrition, 37, 131–156.
    https://doi.org/10.1146/annurev-nutr-071816-064941
    International Coffee Organization(ICO) . (2022). World coffee consumption.
    http://www.ico.org/prices/new-consumption-table.pdf
    Iranpour, S., Saadati, H. M., Koohi, F., & Sabour, S. (2020). Association between caffeine intake and cognitive function in adults; effect modification by sex: Data from National Health and Nutrition Examination Survey (NHANES) 2013-2014. Clinical nutrition (Edinburgh, Scotland), 39(7), 2158–2168.
    https://doi.org/10.1016/j.clnu.2019.09.003
    Jaeger J. (2018). Digit Symbol Substitution Test: The Case for Sensitivity Over Specificity in Neuropsychological Testing. Journal of clinical psychopharmacology, 38(5), 513–519.
    https://doi.org/10.1097/JCP.0000000000000941
    Jarvis M. J. (1993). Does caffeine intake enhance absolute levels of cognitive performance?. Psychopharmacology, 110(1-2), 45–52.
    https://doi.org/10.1007/BF02246949
    Johnson-Kozlow, M., Kritz-Silverstein, D., Barrett-Connor, E., & Morton, D.(2002). Coffee consumption and cognitive function among older adults. American journal of epidemiology, 156(9), 842–850.
    https://doi.org/10.1093/aje/kwf119
    Kiely, K.M. (2014). Cognitive Function. In: Michalos, A.C. (eds) Encyclopedia of Quality of Life and Well-Being Research. Springer, Dordrecht,974-978.
    https://doi.org/10.1007/978-94-007-0753-5_426
    Kolahdouzan, M., & Hamadeh, M. J. (2017). The neuroprotective effects of caffeine in neurodegenerative diseases. CNS neuroscience & therapeutics, 23(4), 272–290.
    https://doi.org/10.1111/cns.12684
    Kot, M., & Daniel, W. A. (2008). The relative contribution of human cytochrome P450 isoforms to the four caffeine oxidation pathways: an in vitro comparative study with cDNA-expressed P450s including CYP2C isoforms. Biochemical pharmacology, 76(4), 543–551.
    https://doi.org/10.1016/j.bcp.2008.05.025
    Lalonde, M. (1974). A new perspective on the health of Canadians. Ottawa, ON: Minister of Supply and Services Canada.
    Li, S., Sun, W., & Zhang, D. (2019). Association of Zinc, Iron, Copper, and Selenium Intakes with Low Cognitive Performance in Older Adults: A Cross-Sectional Study from National Health and Nutrition Examination Survey (NHANES). Journal of Alzheimer's disease : JAD, 72(4), 1145–1157.
    https://doi.org/10.3233/JAD-190263
    Liu, D., Xie, F., Zeng, N., Han, R., Cao, D., Yu, Z., Wang, Y., & Wan, Z.(2023). Urine caffeine metabolites are positively associated with cognitive performance in older adults: An analysis of US National Health and Nutrition Examination Survey (NHANES) 2011 to 2014. Nutrition research (New York, N.Y.), 109, 12–25.
    https://doi.org/10.1016/j.nutres.2022.11.002
    Lozano, R. P., García, Y. A., Tafalla, D. B., & Albaladejo, M. F. (2007). Cafeína: un nutriente, un fármaco, o una droga de abuso. Adicciones, 19(3), 225-238.
    Maia, L., & de Mendonça, A. (2002). Does caffeine intake protect from Alzheimer's disease?. European journal of neurology, 9(4), 377–382.
    https://doi.org/10.1046/j.1468-1331.2002.00421.x
    Martín, M. A., Goya, L., & de Pascual-Teresa, S. (2020). Effect of Cocoa and Cocoa Products on Cognitive Performance in Young Adults. Nutrients, 12(12), 3691.
    https://doi.org/10.3390/nu12123691
    Mitchell, E. S., Slettenaar, M., vd Meer, N., Transler, C., Jans, L., Quadt, F., & Berry, M. (2011). Differential contributions of theobromine and caffeine on mood, psychomotor performance and blood pressure. Physiology & behavior, 104(5), 816–822.
    https://doi.org/10.1016/j.physbeh.2011.07.027
    Moreira, A., Diógenes, M. J., de Mendonça, A., Lunet, N., & Barros, H.
    (2016).Chocolate Consumption is Associated with a Lower Risk of Cognitive Decline. Journal of Alzheimer's disease : JAD, 53(1), 85–93.
    https://doi.org/10.3233/JAD-160142
    Mumford, G. K., Benowitz, N. L., Evans, S. M., Kaminski, B. J., Preston, K. L., Sannerud, C. A., Silverman, K., & Griffiths, R. R. (1996). Absorption rate of methylxanthines following capsules, cola and chocolate. European journal of clinical pharmacology, 51(3-4), 319–325.
    https://doi.org/10.1007/s002280050205
    National Institute on Aging(NIA) . (2023). What Is Mild Cognitive Impairment?.
    https://www.nia.nih.gov/health/memory-loss-and-forgetfulness/what-mild-cognitive-impairment
    National Institute on Aging(NIA) . (2023). Signs of Healthy Aging vs. Mild Cognitive Impairment vs. Dementia.
    https://www.nia.nih.gov/health/memory-loss-and-forgetfulness/what-mild-cognitive-impairment
    National Institute on Aging(NIA) . (2023). How Is Mild Cognitive Impairment Diagnosed and Managed?.
    https://www.nia.nih.gov/health/memory-loss-and-forgetfulness/what-mild-cognitive-impairment
    Panza, F., Solfrizzi, V., Barulli, M. R., Bonfiglio, C., Guerra, V., Osella, A., Seripa, D., Sabbà, C., Pilotto, A., & Logroscino, G. (2015). Coffee, tea, and caffeine consumption and prevention of late-life cognitive decline and dementia: a systematic review. The journal of nutrition, health & aging, 19(3), 313–328.
    https://doi.org/10.1007/s12603-014-0563-8
    Peeri, N. C., Egan, K. M., Chai, W., & Tao, M. H. (2021). Association of magnesium intake and vitamin D status with cognitive function in older adults: an analysis of US National Health and Nutrition Examination Survey (NHANES) 2011 to 2014. European journal of nutrition, 60(1), 465–474.
    https://doi.org/10.1007/s00394-020-02267-4
    Ritchie, K., Carrière, I., de Mendonca, A., Portet, F., Dartigues, J. F., Rouaud, O., Barberger-Gateau, P., & Ancelin, M. L. (2007). The neuroprotective effects of caffeine: a prospective population study (the Three City Study). Neurology, 69(6), 536–545.
    https://doi.org/10.1212/01.wnl.0000266670.35219.0c
    Santos, C., Costa, J., Santos, J., Vaz-Carneiro, A., & Lunet, N. (2010). Caffeine intake and dementia: systematic review and meta-analysis. Journal of Alzheimer's disease : JAD, 20 Suppl 1, S187–S204.
    https://doi.org/10.3233/JAD-2010-091387
    Scarmeas, N., Anastasiou, C. A., & Yannakoulia, M. (2018). Nutrition and prevention of cognitive impairment. The Lancet. Neurology, 17(11), 1006–1015.
    https://doi.org/10.1016/S1474-4422(18)30338-7
    Shirai, Y., Kuriki, K., Otsuka, R., Kato, Y., Nishita, Y., Tange, C., Tomida, M., Imai, T., Ando, F., & Shimokata, H. (2020). Green tea and coffee intake and risk of cognitive decline in older adults: the National Institute for Longevity Sciences, Longitudinal Study of Aging. Public health nutrition, 23(6), 1049–1057.
    https://doi.org/10.1017/S1368980019002659
    Smit H. J. (2011). Theobromine and the pharmacology of cocoa. Handbook of experimental pharmacology, (200), 201–234.
    https://doi.org/10.1007/978-3-642-13443-2_7
    Socała, K., Szopa, A., Serefko, A., Poleszak, E., & Wlaź, P. (2020).Neuroprotective Effects of Coffee Bioactive Compounds: A Review. International journal of molecular sciences, 22(1), 107.
    https://doi.org/10.3390/ijms22010107
    Solfrizzi, V., Panza, F., Imbimbo, B. P., D'Introno, A., Galluzzo, L., Gandin, C., Misciagna, G., Guerra, V., Osella, A., Baldereschi, M., Di Carlo, A., Inzitari, D., Seripa, D., Pilotto, A., Sabbá, C., Logroscino, G., Scafato, E., & Italian Longitudinal Study on Aging Working Group (2015). Coffee Consumption Habits and the Risk of Mild Cognitive Impairment: The Italian Longitudinal Study on Aging. Journal of Alzheimer's disease : JAD, 47(4), 889–899.
    https://doi.org/10.3233/JAD-150333
    Svenningsson, P., Nomikos, G. G., & Fredholm, B. B. (1999). The stimulatory action and the development of tolerance to caffeine is associated with alterations in gene expression in specific brain regions. The Journal of neuroscience : the official journal of the Society for Neuroscience, 19(10), 4011–4022.
    https://doi.org/10.1523/JNEUROSCI.19-10-04011.1999
    Thorn, C. F., Aklillu, E., McDonagh, E. M., Klein, T. E., & Altman, R. B. (2012). PharmGKB summary: caffeine pathway. Pharmacogenetics and genomics, 22(5), 389–395.
    https://doi.org/10.1097/FPC.0b013e3283505d5e
    UC Irvine Institute for Memory Impairments and Neurological Disorders(UCI MIND). (2023). Three stages in the development and progression of Alzheimer’s disease.
    https://mind.uci.edu/dementia/mild-cognitive-impairment/
    United Nations Department of Economic and Social Affairs, Population Division. (2022). World Population Prospects 2022: Summary of Results. UN DESA/POP/2022/TR/NO. 3
    U.S. Department of Health and Human Services and U.S. Department of Agriculture. 2015 – 2020 Dietary Guidelines for Americans. 8th Edition. December 2015.
    https://health.gov/our-work/food-nutrition/previous-dietary-guidelines/2015
    Valada, P., Alçada-Morais, S., Cunha, R. A., & Lopes, J. P. (2022). Thebromine Targets Adenosine Receptors to Control Hippocampal Neuronal Function and Damage. International journal of molecular sciences, 23(18), 10510.
    https://doi.org/10.3390/ijms231810510
    Wang, R., Wang, W., Hu, P., Zhang, R., Dong, X., & Zhang, D. (2021). Association of Dietary Vitamin D Intake, Serum 25(OH)D3, 25(OH)D2 with Cognitive Performance in the Elderly. Nutrients, 13(9), 3089.
    https://doi.org/10.3390/nu13093089
    World Health Organization(WHO) . (2012). Dementia: a public health priority. World Health Organization.
    World Health Organization(WHO) . (‎2017)‎. Draft global action plan on the public health response to dementia. Seventeenth world health assembly.
    World Health Organization(WHO) . (2022). Ageing and health:Common health conditions associated with ageing.
    https://www.who.int/news-room/fact-sheets/detail/ageing-and-health
    Wolf, L. K. (2013). Caffeine jitters. Chemical Engineering News, 91(5), 9-12.
    Zhou, X., & Zhang, L. (2021). The Neuroprotective Effects of Moderate and Regular Caffeine Consumption in Alzheimer's Disease. Oxidative medicine and cellular longevity, 2021, 5568011.
    https://doi.org/10.1155/2021/5568011

    下載圖示
    QR CODE