簡易檢索 / 詳目顯示

研究生: 范斯淳
FAN, SZU-CHUN
論文名稱: 高中工程設計取向之課程設計與實驗:跨學科STEM知識的整合與應用
The Design and Experiment of a High School Engineering-Oriented Curriculum: An Approach to Integrate and Apply STEM Knowledge
指導教授: 游光昭
Yu, Kuang-Chao
羅希哲
Lou, Shi-Jer
學位類別: 博士
Doctor
系所名稱: 科技應用與人力資源發展學系
Department of Technology Application and Human Resource Development
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 222
中文關鍵詞: 科技教育高中工程教育STEM工程設計取向課程工程設計STEM態度
英文關鍵詞: Technology education, High school engineering education, STEM, Engineering-oriented curriculum, Engineering design, Attitudes toward STEM
DOI URL: https://doi.org/10.6345/NTNU202204703
論文種類: 學術論文
相關次數: 點閱:641下載:101
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 以工程設計為主軸之STEM跨學科整合性課程,為近代科技教育課程改革主要趨勢。本研究之目的,在於發展適用於臺灣高中階段之「工程設計取向STEM課程設計模式」,並據此發展一套教學模組,以檢驗其教學成效。本研究採用混合研究法的途徑,經由前導的教學模組準實驗研究、深度訪談、與國外STEM課程內容組成分析,建構工程設計取向STEM課程設計模式的學理基礎。而後,透過再次的教學實驗,驗證本課程設計模式之可行性,並深入探討教學模組對學生學習的影響。
    本研究之研究對象為台北市某高中一年級103位學生,主要研究變項為機構概念知識、工程設計核心能力、及STEM態度。教學模組選取機構設計為主題,內容包含三個STEM實作單元,及一個機構玩具設計製作專題。資料分析採取以量化為主(含描述統計、t考驗、ANOVA、ANCOVA、相關分析、及探索性的逐步迴歸分析等)、質性分析為輔的方式進行。依據研究結果與討論,本研究提出結論與建議如下:

    1.本研究之教學模組,可有效提升學生對機構概念知識的理解及其於機構玩具設計製作專題之表現。
    2.學生之學習興趣是影響其投入工程設計專題的重要因素,而具體、成功的實作學習經驗,會提升學生對工程設計取向課程的興趣。
    3.影響學生解決工程設計問題之關鍵因素,在於學生是否能將STEM知識整合應用於「發展方案、預測分析、建模/執行方案、測試修正」等四項工程設計核心能力。
    4.工程設計取向STEM課程設計模式,包含:(1)選擇課程主題、(2)剖析課程內涵、(3)建構學習經驗、(4)檢核評估等四大階段與10項步驟。
    5.發展工程設計取向STEM課程之兩大關鍵,在於「聚焦核心之STEM知識」,並透過「探究實驗」與「設計製作」取向之STEM實作單元,幫助學生確實建構知識思考與工程實作的連結。

    具體而言,工程設計取向之STEM課程對高中未來的科技教育應可帶來正向的影響。因此,教師可依循此課程設計模式,發展12年國教高中生活科技領域之工程設計取向課程。

    Technology educators in Taiwan are increasingly recognizing the need for engineering-oriented STEM interdisciplinary curricula. The main objective of this study was to develop an ‘Engineering-Oriented STEM Curriculum Design Model’ that is appropriate for high school technology education in Taiwan. The study used a mixed-methods research approach. The academic and theoretical basis of the curriculum design model was developed from a series of pilot studies including a quasi-experimental teaching study, interviews, and a content analysis of STEM curriculum projects in the United States. A teaching module was designed based on the curriculum design model, and the effectiveness of the curriculum design model and the teaching module were assessed.
    The study population consisted of 103 tenth-grade students in Taipei, Taiwan. The main variables included conceptual knowledge about mechanisms, core engineering design abilities, and attitudes toward STEM. The teaching module focused on mechanism design, and included three hands-on STEM instruction units and a mechanism toy design project. The data analysis applied a quantitative approach (descriptive statistics, t-test, ANOVA, ANCOVA, correlation analysis, and exploratory regression analysis), supplemented by qualitative analysis. The analysis yielded the following findings and implications:

    1. The teaching module improved performance in conceptual knowledge about mechanisms, and in the mechanism toy design project.
    2. Interest in learning among students affected their performance on the project, and a positive learning experience enhanced their interest in engineering design.
    3. The key factors affecting student performance in engineering design problem-solving were the ability to apply STEM knowledge about mechanisms when developing solutions, predictive analysis, modeling/ prototype construction, and testing and correction.
    4. The Engineering-Oriented STEM Curriculum Design Model consists of four key stages and 10 steps. The four key stages are: (1) selecting curriculum topics; (2) analyzing curriculum content; (3) constructing a learning experience; and (4) checking and evaluating instruction units.
    5. Two core principles for developing an engineering-oriented STEM curriculum are ‘focusing on core STEM knowledge’ and ‘developing effective hands-on STEM instruction units’ to provide useful ‘inquiry experiment’ and ‘design and making’ learning experiences. This kind of curriculum greatly benefits students by helping them connect the ‘thinking’ of knowledge with the ‘doing’ of engineering.

    In summary, the results demonstrated the positive effects of incorporating an engineering-oriented STEM curriculum into high school technology education in Taiwan. The curriculum design model is an effective instrument for developing this kind of curriculum for incorporation into the 12-year compulsory education system.

    目 錄 vii 表 次 ix 圖 次 xi 第一章 緒 論 1 第一節 研究背景與動機 1 第二節 研究目的 9 第三節 名詞釋義 12 第四節 研究範圍與限制 14 第二章 文獻探討 17 第一節 跨學科STEM知識的整合理論 18 第二節 工程設計與STEM知識應用 24 第三節 美國STEM課程之內涵與特性分析 31 第四節 工程設計取向STEM課程設計模式 46 第五節 態度對工程設計取向課程學習的影響 56 第六節 國內相關研究 58 第三章 研究方法與步驟 64 第一節 研究設計 64 第二節 前導研究 66 第三節 研究方法 77 第四節 研究對象 80 第五節 工程設計取向STEM課程設計模式 81 第六節 工程設計取向STEM教學模組 85 第七節 研究工具 102 第八節 資料處理與分析 111 第四章 研究結果與討論 117 第一節 En-STEM教學模組對學生概念知識學習的影響 117 第二節 學生之工程設計核心能力表現 127 第三節 工程設計問題解決與STEM知識應用之關鍵 132 第四節 學生STEM態度的改變 149 第五節 綜合討論 155 第六節 En-STEM設計模式與教學模組之省思與討論 163 第五章 結論與建議 175 第一節 結論 175 第二節 建議 178 參考文獻 181 附錄 197 附錄一 STEM課程內容概述 197 附錄二 STEM教材分析表 202 附錄三 STEM實作單元與學習單 206 附錄四 機構玩具設計專題學習單 217 附錄五 對科學、科技、工程、數學學科的態度量表 221

    一、中文部分
    尤華陽(2013)。應用於節能型太陽能教具開發與建立STEM教育學程最佳化規劃與設計(未出版之碩士論文)。國立高雄第一科技大學機械與自動化工程研究所,高雄市。
    吳盈潔(2013)。高職餐飲科C-STEM烘焙創意教學之研究(未出版之碩士論文)。屏東科技大學技職教育研究所,屏東縣。
    宋曜廷、潘佩妤(2010)。混合研究在教育研究的應用。教育科學研究期刊,55(4),97-130。
    李坤崇(2006)。教學評量。臺北市:心理。
    李懿芳、郭金國、李隆盛(2012)。技術校院STEM領域學生學習技能與支持系統之需求評估研究。行政院國家科學委員會專題研究成果報告(NSC101-2511-S003-041-MY2)。臺北市:國立臺灣師範大學工業教育學系(所)。
    周雍傑(2014)。STEM專案式學習之創造力研究-以電土為例(未出版之碩士論文)。國立屏東科技大學技職教育研究所,屏東縣。
    林坤誼(2001)。高中開設準工程取向科技教育課程之研究(未出版之碩士論文)。國立臺灣師範大學工業科技教育學系,臺北市。
    林坤誼(2012)。STEM實作活動對STEM知識、設計能力與動作技能統整之影響:以自然與生活科技領域職前教師為例。行政院國家科學委員會專題研究成果報告(編號:NSC102-2628-S003-001)。臺北市:國立臺灣師範大學科技應用與人力資源發展學系。
    林怡廷(2015)。探討STEM課程以科學探究教學法在課外社團實施之研究(未出版之碩士論文)。臺北市立大學應用物理暨化學系,臺北市。
    侯世光(2006)。高中準工程課程發展之實驗研究。行政院國家科學委員會專題研究成果報告(編號:NSC95-2511-S003-030)。臺北市:國立臺灣師範大學環境教育中心。
    范斯淳、楊錦心(2012)。美日科技教育課程及其啟示。教育資料集刊,55,71-102。
    孫志強(2015)。STEM課程元素融入阿美族文化之研究(未出版之碩士論文)。臺北市立大學科學教育碩士,臺北市。
    張玉山、楊雅茹(2014)。STEM 教學設計之探討:以液壓手臂單元為例。科技與人力教育季刊,1(1),2-17。
    莊舜元(2010)。專案式STEM學習活動之發展研究(未出版之碩士論文)。高雄師範大學工業科技教育學系,高雄市。
    郭家良(2014)。STEM 課程統整模式運用於國中生活科技教學對學生學習成效影響之行動研究(未出版之碩士論文)。國立臺灣師範大學科技應用與人力資源發展學系,臺北市。
    郭家銘(2005)。國中工程設計取向科技教育教學活動設計與實施成效之研究(未出版之碩士論文)。國立臺灣師範大學工業科技教育學系,臺北市。
    陳春后(2015)。自我效能與STEM樂高機器人課程對國民小學六年級學生學習成效與學習態度之影響(未出版之碩士論文)。國立中央大學學習與教學研究所,桃園市。
    陳柏豪(2008)。STEM整合式教學法在國中自然與生活科技領域物理教學之研究(未出版之碩士論文)。屏東科技大學技術及職業教育研究所,屏東縣。
    陳重宇(2011)。太陽能產業實體教具開發與STEM工業教育之最佳化設計(未出版之碩士論文)。國立高雄第一科技大學機械與自動化工程研究所,高雄市。
    曾國鴻(2006)。學生以知識管理實踐STEM(Science, Technology, Engineering and Mathematics)學習之中美跨國研究: 總計劃。行政院國家科學委員會專題研究成果報告(編號:NSC96-2516-S276-001-MY3)。屏東縣:美和技術學院經營管理研究所。
    游光昭、范斯淳、汪殿杰(2012)。玩具機構模組的開發:CAD的運用與STEM知識的分析。論文發表於Conference on Digital Game-based Learning 2012,杭州,中國。
    黃子榕(2014)。職前教師於STEM實作課程的知識整合行為研究(未出版之碩士論文)。國立臺灣師範大學科技應用與人力資源發展學系,臺北市。
    黃子榕、林坤誼(2014)。職前教師於 STEM 實作課程的知識整合行為研究。科技與人力教育季刊,1(1),18-39。
    黃進和(2006)。準工程學習對綜合高中學生工程與科技學程選擇影響之研究(未出版之博士論文)。國立臺灣師範大學工業科技教育學系,臺北市。
    劉一慧(2012)。STEM專案學習對自我效能與工程專業承諾之影響(未出版之博士論文)。高雄師範大學工業科技教育學系,高雄市。
    蔡依帆、吳心昀(2014)。STEM 整合教學活動─空投救援物資。科技與人力教育季刊,1(1),40-54。
    蔡蕙文(2008)。STEM教學模式應用於國中自然與生活科技領域教學之研究(未出版之碩士論文)。屏東科技大學技術及職業教育研究所,屏東縣。
    羅希哲(2009)。學生以知識管理實踐STEM(Science, Technology, Engineering &; Mathematics)學習之中美跨國研究-高職學生以知識管理實踐STEM(Science, Technology, Engineering &; Mathematics)問題導向學習之中美跨國研究。行政院國家科學委員會專題研究成果報告(編號:NSC96-2516-S020-001-MY3)。屏東縣:國立屏東科技大學師資培育中心。
    羅希哲、蔡慧音、曾國鴻(2011)。高中女生STEM 網路專題式合作學習之研究。高雄師大學報,30,41-61。

    二、外文部分
    American Association for the Advancement of Science [AAAS]. (1993). Benchmarks for science literacy. New York: Oxford University Press.
    Asunda, P. A. (2012). Standards for technological literacy and STEM education delivery through career and technical education programs. Journal of Technology Education, 23(2), 44-60.
    Asunda, P. A., & Hill, R. B. (2007). Critical features of engineering design in technology education. Journal of Industrial Teacher Education, 44(1), 25-48.
    Barry, N. B. (2014). The ITEEA 6E Learning by DeSIGNTM Model. Technology and Engineering Teacher, March, 14-19.
    Bayer Corporation (2010). Planting the seeds for a diverse U.S. STEM pipeline: A compendium of best practice K-12 STEM education programs. Pittsburgh, PA: Author.
    Beane, J. A. (1997). Curriculum integration: Designing the core of democratic education. New York: Teachers College Press.
    Bennett, J., Braund, M., & Sharpe, R. M. (2014). Student attitudes, engagement and participation in STEM subjects. London: The Royal Society/Department of Education, The University of York.
    Berry III, R. Q., Reed, P. A., Ritz, J. M., Lin, C. Y., Hsiung, S., & Frazier, W. (2004). Stem initiatives: Stimulating students to improve science and mathematics achievement. The Technology Teacher, 64(4), 23-30.
    Burghardt, M. D. & Hacker, M. (2004). Informed design: A contemporary approach to design pedagogy as the core process in technology. The Technology Teacher, 64(1), 6-8.
    Bybee, R. W. (2013). The case for STEM education: Challenges and opportunities. Arlington, VA: NSTA Press.
    Cantrell, P., Pekcan, G., Itani, A., & Velasquez‐Bryant, N. (2006). The effects of engineering modules on student learning in middle school science classrooms. Journal of Engineering Education, 95(4), 301-309.
    Carr, R. L., & Strobel, J. (2012, October). Work in progress: Development of a metacognition scaffold in STEM/P-6 engineering context: MCinEDP. Paper presented at the Frontiers in Education Conference (FIE), OK.
    Carr, R. L., Bennett, L. D., & Strobel, J. (2012). Engineering in the K-12 STEM standards of the 50 U.S. states: An analysis of presence and extent. Journal of Engineering Education, 101(3), 539-564.
    Clark, A. C., & Ernst, J. V. (2008). STEM-based computational modeling for technology education. Journal of Technology Studies, 34(1), 20-27.
    Creswell, J. W., & Plano Clark, V. (2007). Designing and conducting mixed methods research. Thousand Oaks, CA: Sage.
    Crismond, D. P., & Adams, R. S. (2012). The informed design teaching and learning matrix. Journal of Engineering Education, 101(4), 738-797.
    Custer, R. L., & Daugherty, J. (2009). Professional development for teachers of engineering: Research and related activities. The Bridge, 39(3), 18-24.
    Daugherty, M. K. (2009). The “T” and “E” in STEM. In ITEEA (Ed.), The overlooked STEM imperatives: Technology and engineering (pp. 18-25). Reston, VA: ITEEA.
    Dixon, R. A., & Brown, R. A. (2012). Transfer of learning: Connecting concepts during problem solving. Journal of Technology Education, 24(1), 2-16.
    Drake, S. M. (1998). Creating integrated curriculum: Proven ways to increase student learning. Thousand Oaks, CA: Corwin Press.
    Dugger, W. E. (2010, December). Evolution of STEM in the United States. Paper presented at the 6th Biennial International Conference on Technology Education Research, Gold Coast, Queensland, Australia.
    Engineering the Future (2007). Textbook overview and table of contents. Retrieved from http://legacy.mos.org/etf/TB_BookOverviewTOC.pdf
    Engineering the Future. (2014). Content. Retrieved from http://www.iat.com/
    courses/engineering/engineering-the-future/?type=content
    Faber, M., Unfried, A., Wiebe, E. N., Corn, J., Townsend, T., & Collins, T. (2013). Student attitudes toward STEM: The development of upper elementary school and middle/high school student surveys. Proceedings of the 2013 American Society for Engineering Education Annual Conference & Exposition. Washington, DC: ASEE.
    Fan, S. C., & Yu, K. C. (2014, December). Teacher reflection on practice: Teaching engineering design modules in high school of Taiwan. Paper presented at the AAEE2014 Conference Wellington, New Zealand.
    Fan, S. C., & Yu, K. C. (2015). How an integrative STEM curriculum can benefit students in engineering design practices. International Journal of Technology and Design Education. DOI: 10.1007/s10798-015-9328-x.
    Fogarty, R. (1991). Ten ways to integrate curriculum. Educational Leadership, 49(2), 61-65.
    Gardner, D. P. et al. (1983). A nation at risk: The imperative for educational reform. A report to the Nation and the Secretary of Education. Washington, DC: The National Commission on Excellence in Education, United States Department of Education.
    Grimm, S. L. (2010). Gateway to technology (GTT) Project lead the way (PLTW). Retrieved from http://www.lcsd.k12.ny.us/cms/lib/NY01001015/Centricity/Domain/4/PLTW-Board_Presentation_Nov_2010.pdf
    Guzey, S. S., Harwell, M., & Moore, T. (2014). Development of an instrument to assess attitudes toward science, technology, engineering, and mathematics (STEM). School Science and Mathematics, 114(6), 271-279. doi: 10.1111/ssm.12077
    Havice, W. (2009). The power and promise of a STEM education: Thriving in a complex technological world. In ITEEA (Ed.), The overlooked STEM imperatives: Technology and engineering (pp. 10-17). Reston, VA: ITEEA.
    Hayes, J. R. (1989). The complete problem solver (2nd ed.). Hillsdale, NJ: Lawrence Earlbaum Associates.
    Hernandez, P. R., Bodin, R., Elliott, J. W., Ibrahim, B., Rambo-Hernandez, K. E., Chen, T. W., & de Miranda, M. A. (2014). Connecting the STEM dots: measuring the effect of an integrated engineering design intervention. International Journal of Technology and Design Education, 24(1), 107-120.
    Heroux, K., Turner, K., & Pellegrini, B. (2010). The MWM approach to technological design. Journal of Materials Education, 32(5-6), 231-240.
    Herschbach, D. R. (2011). The STEM initiative: Constraints and challenges. Journal of sTEm Teacher Education, 48(1), 96-122.
    Hoachlander, G., & Yanofsky, D. (2011). Making STEM real. Educational Leadership, March, 60-65.
    Householder, D. L., & Hailey, C. E. (Eds.). (2012). Incorporating engineering design challenges into STEM courses. Retrieved from http://ncete.org/flash/pdfs/NCETECaucusReport.pdf
    International Technology and Engineering Educators Association [ITEEA]. (n.d.). Engineering byDesign™ (EbD) a standards-based model program. Retrieved from http://www.iteea.org/EbD/ebd.htm
    International Technology and Engineering Educators Association [ITEEA]. (Ed.). (2009). The overlooked STEM imperatives: Technology and engineering. Reston, VA: ITEEA.
    International Technology and Engineering Educators Association [ITEEA]. (2007). Standards for technological literacy: Content for the study of technology. Reston, VA: Author.
    Johnson, R. B., & Onwuegbuzie, A. J. (2004). Mixed methods research: A research paradigm whose time has come. Educational Researcher, 33(7), 14-26.
    Kelley, T. R. (2008). Cognitive processes of students participating in engineering-focused design instruction. Journal of Technology Education, 19(2), 50-64.
    Kelley, T. R. (2010). Staking the claim for the ‘T’ in STEM. The Journal of Technology Studies, 36(1), 2-11.
    Kelley, T., & Kellam, N. (2009). A theoretical framework to guide the re-engineering of technology education. Journal of Technology Education, 20(2), 37-49.
    Kelley, T., Brenner, D. C., & Pieper, J. T. (2010). PLTW and Epics‐High: Curriculum comparisons to support problem solving in the context of engineering design. Utah, UT: National Center for Engineering and Technology Education (NCETE).
    Khanlari, A. (2013, December). Effects of educational robots on learning STEM and on students' attitude toward STEM. Paper presented at the 2013 IEEE 5th Conference on Engineering Education (ICEED), Kuala Lumpur.
    Lantz Jr., H. B. (2009). Science, technology, engineering, and mathematics (STEM) education what form? What function? Retrieved from http://www.currtechintegrations.com/pdf/STEMEducationArticle.pdf
    Lewis T. (1999). Research in technology education - some areas of need. Journal of Technology Education, 10(2), 41-56.
    Lewis, T. (2004). A turn to engineering: The continuing struggle of technology education for legitimization as a school subject. Journal of Technology Education, 16(1), 21-39.
    Lewis, T. (2005). Coming to terms with engineering design as content. Journal of Technology Education, 16(2), 37-54.
    Lou, S. J., Liu, Y. H., Shih, R. C., & Tseng, K. H. (2010). The senior high school students learning behavioral model of STEM in PBL. International Journal of Technology and Design Education, 21(2), 161-183.
    Magnusseen, L., Ishida, D., & Itano, J. (2000). The impact of the use of inquiry-based learning as a teaching methodology on the development of critical thinking. Journal of Nursing Education, 39(8), 360-364.
    Mahoney, M. (2010). Students' attitudes toward STEM: Development of an Instrument for high school STEM-based programs. Journal of Technology Studies, 36(1), 24-34.
    Maltese, A. V., & Tai, R. H. (2011). Pipeline persistence: Examining the association of educational experiences with earned degrees in STEM among U.S. students. Science Education, 95(5), 877-907.
    Maryland State Department of Education. (2012). Maryland state STEM standards of practice framework grades 6-12. Retrieved from http://mdk12.org/instruction/academies/MDSTEM_Framework_Grades6-12.pdf
    Mativo, J., & Wicklein, R. (2011). Learning effects of design strategies on high school students. Journal of STEM Teacher Education, 48(3), 66-92.
    Mehalik, M. M., Doppelt, Y., & Schuun, C. D. (2008). Middle-school science through design-based learning versus scripted inquiry: Better overall science concept learning and equity gap reduction. Journal of Engineering Education, 97(1), 71-85.
    Mentzer, N. (2011). High school engineering and technology education integration through design challenges. Journal of STEM Teacher Education, 48(2), 103-136.
    Merrill, C., Custer, R. L., Daugherty, J., Westrick, M., & Zeng, Y. (2009). Delivering core engineering concepts to secondary level students. Journal of Technology Education, 20(1), 48-64.
    Moore, T. J., Miller, R. L., Lesh, R. A., Stohlmann, M. S., & Kim, Y. R. (2013). Modeling in engineering: The role of representational fluency in students’ conceptual understanding. Journal of Engineering Education, 102(1), 141-178.
    Morrison, J., & Bartlett, R. (2009). STEM as curriculum: An experiential approach. Education Week, 23, 28-31.
    National Academy of Engineering [NAE], & National Research Council [NRC]. (2014). STEM integration in K-12 education: Status, prospects, and an agenda for research. Washington, DC: The National Academies Press.
    National Assessment Governing Board [NAGB]. (2012). 2014 Abridged technology and engineering literacy framework. Retrieved from http://www.nagb.org/content/nagb/assets/documents/publications/frameworks/tel-abridged-2014.pdf
    National Governors Association [NGA]. (2007). Building a science, technology, engineering and math agenda. Retrieved from
    http://www.nga.org/Files/pdf/0702INNOVATIONStem.pdf
    National Research Council [NRC]. (2009). Engineering in K-12 education: understanding the status and improving the prospects. Washington, DC: The National Academies Press.
    National Research Council [NRC]. (2011). Successful K-12 STEM education: Identifying effective approaches in science, technology, engineering, and mathematics. Washington, DC: The National Academies Press.
    NGSS Lead States. (2013). Next generation science standards: For states, by states. Washington, DC: National Academies Press.
    Oh, Y. J., Jia, Y., Lorentson, M., & Labanca, F. (2012). Development of the educational and career interest scale in science, technology, and mathematics for high school students. Journal of Science Education and Technology, December, 1-11.
    Olivarez, N. R. (2012). The impact of a STEM program on academic achievement of eighth grade students in a south Texas middle school. Unpublished doctoral dissertateion, Texas A & M University - Corpus Christi, Corpus Christi, TX.
    Pinelli, T., & Haynie III, W. (2010). A case for the nationwide inclusion of engineering in the K-12 curriculum via technology education. Journal of Technology Education, 21(2), 52-68.
    Project Lead The Way [PLTW]. (2012). Getting started. Retrieved from http://www.pltw.org/sites/default/files/GettingStarted_2012_0.pdf
    Project Lead The Way [PLTW]. (2014). Our programs. Retrieved from https://www.pltw.org/our-programs
    Ritz, J. M., & Fan, S. C. (2014). STEM and technology education: international state-of-the-art. International Journal of Technology and Design Education, 25(4), 429-451.
    Roberts, A. (2013). STEM is here, now what? Technology and Engineering Teacher, 73(1), 22-27.
    Sanders, M. (2009). STEM, STEM education, STEMmania. The Technology Teacher, 68(4), 20-26.
    Schnittka, C. G., & Bell, R. L. (2011). Engineering design and conceptual change in science: Addressing thermal energy and heat transfer in eighth grade. International Journal of Science Education, 33, 1861-1887.
    Silk, E. M., & Schunn, C. D. (2008, January). Core concepts in engineering as a basis for understanding and improving K-12 engineering education in the United States. Paper presented at the National Academy of Engineering/National Research Council workshop on K-12 Engineering Education, Washington, D.C.
    Sjaastad, J. (2012). Measuring the ways significant persons influence attitudes towards science and mathematics. International Journal of Science Education, 35, 192-212.
    Sorenson, B. (2010). Alaska S.T.E.M.: Education and the economy report on the need for improved science, technology, engineering and mathematics education in Alaska. Retrieved from http://www.jedc.org/forms/STEMEducationJEDCFinal.pdf
    Stohlmann, M., Moore, T. J., & Roehrig, G. H. (2012). Considerations for teaching integrated STEM education. Journal of Pre-College Engineering Education Research, 2(1), 28-34. DOI: 10.5703/1288284314653
    Taraban, R., Anderson, E. E., DeFinis, A., Brown, A. G., Weigold, A., & Sharma, M. (2007). First steps in understanding engineering students' growth of conceptual and procedural knowledge in an interactive learning context. Journal of Engineering Education, 96(1), 57-68.
    Tashakkori, A. and C. Teddlie (2010). Sage handbook of mixed methods in social & behavioral research. Thousand Oaks, CA, Sage Publications.
    The Infinity Project (n.d.-a). The infinity projectSM: Bringing engineering education to schools across the country. Retrieved from http://www.smu.edu/Lyle/Infinity/Infinity/LearnMore
    The Infinity Project (n.d.-b). Introduction to engineering design. Retrieved from http://www.smu.edu/~/media/Site/Lyle/K-12/Visioneering/
    Documents/Infinity%20Curriclum%20Materials/Engineering_Design%20PPT%20Slides.ashx?la=en
    Thomas, J. W. (2000). A review of research on project-based learning. San Rafael, CA: Autodesk Foundation.
    Toulmin, C., & Groome, M. (2007). Building a Science, Technology, Engineering, and Math Agenda. Washington, DC: National Governors Association. (ERIC Document Reproduction Service No. ED 496324)
    Trowbridge, L. W., & Bybee, R. W. (1990). Becoming a secondary science teacher. Columbus, OH: Merrill.
    Tyler-Wood, T., Knezek, G., & Christensen, R. (2010). Instruments for assessing interest in STEM content and careers. Journal of Technology and Teacher Education, 18(2), 345-368.
    Wendell, K. B. & Rogers, C. B. (2013). Engineering design-based science, science content performance, and science attitudes in elementary school. Journal of Engineering Education, 102(4), 513-540.
    White, H. (2001). Problem-based learning. Speaking of Teaching, 11(1), 1-7.
    Wiggins, G. & McTighe, J. (2005). Understanding by design (2nd ed.). Alexandria, Va.: Association for Supervision and Curriculum Development.
    Williams, P. J. (2011). STEM education: Proceed with caution. Design and Technology Education: An International Journal, 16(1), 26-35.
    Yu, K. C., Lin, K. Y., & Fan, S. C. (2013). How high school students apply knowledge in engineering design projects. International Journal of Engineering Education, 29(6), 1604-1614.

    下載圖示
    QR CODE