研究生: |
鄭鈺羲 CHENG, Yu-Shi |
---|---|
論文名稱: |
臺東鹿野溪下游地熱區古流體溫壓及三維應力場之探討 Study of Ancient Conditions of Temperature-Pressure-Stress Field in the Downstream Geothermal Area of Luye River, Taitung |
指導教授: |
葉恩肇
Yeh, En-Chao |
口試委員: |
葉恩肇
Yeh, En-Chao 羅 偉 lo wei 陳惠芬 Huei-Fen Chen 陳致同 Chih-Tung Chen |
口試日期: | 2024/12/04 |
學位類別: |
碩士 Master |
系所名稱: |
地球科學系 Department of Earth Sciences |
論文出版年: | 2024 |
畢業學年度: | 113 |
語文別: | 中文 |
論文頁數: | 191 |
中文關鍵詞: | 鹿野溪 、液包體 、拉曼光譜分析 、石英脈 、地熱開發 |
英文關鍵詞: | Luye River, fluid inclusion, Raman spectroscopy analysis, quartz vein, geothermal development |
研究方法: | 實驗設計法 |
DOI URL: | http://doi.org/10.6345/NTNU202401986 |
論文種類: | 學術論文 |
相關次數: | 點閱:6 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
臺灣位於歐亞板塊與菲律賓海板塊交界處,在板塊聚合作用的影響下,地殼持續碰撞、造山及快速掘升,由於火山活動與板塊交互作用,造就國內擁有豐富的地熱資源可供開發使用,地熱發電供電穩定且不易受天候影響,若善加利用不僅對於國內能源自主與多樣化有相當大的幫助,更可以減少我國對石化能源過度依賴的情形,因此臺灣的地熱資源探勘與地熱潛能評估是現今刻不容緩的重要工作之一。
臺東縣延平鄉鹿野溪,地處中央山脈東翼的紅葉地區,近年來是國家發展地熱產業的重點區域之一,張郁敬(2022)綜合遙測判釋、地質調查以及裂隙活化趨勢分析之研究結果,研判現地導水裂隙位態以西北-東南方向高傾角為主。經本研究地質調查結果指出,鹿野溪沿岸有相當多溫泉,並且有正斷層構造出露,正斷層多伴隨石英脈發育與熱液流出,這些後期礦脈位態也以西北-東南方向為主,與現地導水裂隙方向一致,因此本研究延續前人結果,以臺東鹿野溪紅葉谷溫泉地區為例,結合礦脈位態與液包體(fluid inclusion)分析對鹿野溪進行地熱開發評估,評估鹿野地區溫度的增減。
由於石英脈發育時,二氧化矽流體液壓至少要達到最小正應力,才能將岩體撐開,因此能利用礦脈位態統計進行古應力場評估進而解算其三維應力狀態與生成深度,並以石英脈中纖維狀液包體進行分析,瞭解礦脈形成時的溫度液壓資訊。經野外觀察及室內分析,最後一期西北-東南向礦脈發生於正斷層應力場,石英礦脈形成在地下五公里左右,並且包裹溫度達到407"°C" ,包裹壓力為109MPa,顯示鹿野溪有超額液壓的存在,然而現地鑽井卻沒有井噴的狀況,推測地下有類似蓋層的滲透屏障存在,導致地下儲集層富含高溫過壓流體,受到後期構造活動影響,鹿野地區發展出許多礦脈與斷層,並且形成大量高傾角的西北-東南向開口裂隙群,這些正斷層與裂隙很有機會成為高溫過壓流體通道,綜合液包的溫壓資料以及應力場的重建與評估,以及前人磷灰石與鋯石核飛跡定年資料及井下溫度數據,本研究推測,鹿野溪下游地熱區在未來4.5百萬年內,其地溫梯度仍可維持在47°C/km以上,具有良好的地熱潛力,若能將其地熱資源有效應用於地熱工業的發展,將具備極高的利用價值。
Taiwan is located at the boundary between the Eurasian Plate and the Philippine Sea Plate. Due to the ongoing convergence of these plates, the region experiences continuous crustal collision, mountain building, and rapid uplift. The interaction between volcanic activity and tectonic processes has endowed Taiwan with abundant geothermal resources, which hold significant potential for development. Geothermal power generation offers stable energy output, unaffected by weather conditions, making it a valuable resource for enhancing Taiwan’s energy self-sufficiency and diversifying its energy portfolio. Additionally, leveraging geothermal energy can help reduce Taiwan’s reliance on fossil fuels. Consequently, geothermal resource exploration and potential assessment are critical and urgent tasks for Taiwan's energy development.
In Yenping Township, Taitung County, the Luye River area, located on the eastern flank of the Central Range in the Hongye region, has recently become one of the key areas for developing the national geothermal industry. Chang (2022) integrated results from remote sensing interpretation, geological surveys, and fracture activation trend analysis, concluding that the dominant water-conducting fractures in this area are characterized by steep northwest-southeast orientations. This study’s geological surveys along the Luye River revealed numerous hot springs and the presence of normal fault structures. These normal faults are often associated with quartz vein development and hydrothermal outflows, with late-stage mineral veins predominantly aligned northwest-southeast, consistent with the water-conducting fracture trends.Building upon previous findings, this study focused on the Hongye Valley hot spring area along the Luye River, using mineral vein orientations and fluid inclusion analyses to evaluate the geothermal development potential of the Luye River region, particularly in terms of temperature fluctuations. During the formation of quartz veins, the silica-bearing fluid pressure must exceed the minimum principal stress to propagate fractures. This allows for paleo-stress field reconstruction through statistical analysis of mineral vein orientations, enabling the determination of three-dimensional stress states and formation depths. Fluid inclusions within fibrous quartz veins were analyzed to infer temperature and pressure conditions during mineralization.
Field observations and laboratory analyses indicate that the latest northwest-southeast-oriented mineral veins formed within a normal fault stress regime. Fluid inclusions in quartz veins suggest formation at depths of approximately 5 kilometers, with inclusion temperatures reaching 407°C and pressures of 109 MPa, indicating the presence of overpressured fluids in the Luye River region. However, no blowouts were observed in current boreholes, suggesting the existence of a subsurface permeability barrier, akin to a caprock, trapping high-temperature overpressured fluids within the reservoir. Subsequent tectonic activity has produced numerous mineral veins and faults in the Luye area, forming dense, high-angle northwest-southeast-oriented open fracture networks. These normal faults and fractures likely serve as conduits for high-temperature overpressured fluids.By integrating fluid inclusion data with stress field reconstruction and geothermal assessments, this study concludes that the Luye River region holds substantial geothermal potential.Combined with apatite and zircon fission-track dating and downhole temperature data, it is estimated that the geothermal gradient in the downstream geothermal zone of the Luye River could still exceed 47°C/km after 4.5 million years. If these geothermal resources can be utilized for industrial development, the potential for sustainable exploitation appears promising.
André, A.-S., Sausse, J., & Lespinasse, M. (2001). New approach for the quantification of paleostress magnitudes: Application to the Soultz vein system (Rhine Graben, France). Tectonophysics, 336(1), 215–231. https://doi.org/10.1016/S0040-1951(01)00091-4
Azbej, T., Szabó, C., Bodnar, R. J., & Dobosi, G. (2006). Genesis of carbonate aggregates in lamprophyres from the northeastern Transdanubian Central Range, Hungary: Magmatic or hydrothermal origin? Lithos, 89(1–2), 55–72. https://doi.org/10.1016/j.lithos.2005.11.005
Baer, G., Beyth, M., & Reches, Z. E. (1994). Dikes emplaced into fractured basement, Timna igneous complex, Israel. Journal of Geophysical Research: Solid Earth, 99(B12), 24039–24050. https://doi.org/10.1029/94JB01778
Beyssac, O., Bollinger, L., Avouac, J. P., & Goffé, B. (2004). Thermal metamorphism in the Lesser Himalaya of Nepal determined from Raman spectroscopy of carbonaceous material. Earth and Planetary Science Letters, 225(1–2), 233–241. https://doi.org/10.1016/j.epsl.2004.05.023
Beyssac, O., Goffé, B., Chopin, C., & Rouzaud, J.-N. (2002). Raman spectra of carbonaceous material in metasediments: A new geothermometer. Journal of Metamorphic Geology, 20(9), 859–871. https://doi.org/10.1046/j.1525-1314.2002.00408.x
Beyssac, O., Goffé, B., Petitet, J.-P., Froigneux, E., Moreau, M., & Rouzaud, J.-N. (2003). On the characterization of disordered and heterogeneous carbonaceous materials by Raman spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 59(10), 2267–2276. https://doi.org/10.1016/S1386-1425(03)00070-2
Beyssac, O., Rouzaud, J.-N., Goffé, B., Brunet, F., & Chopin, C. (2002). Graphitization in a high-pressure, low-temperature metamorphic gradient: A Raman microspectroscopy and HRTEM study. Contributions to Mineralogy and Petrology, 143(1), 19–31. https://doi.org/10.1007/s00410-001-0324-7
Beyssac, O., Simoes, M., Avouac, J. P., Farley, K. A., Chen, Y. G., Chan, Y. C., & Goffé, B. (2007). Late Cenozoic metamorphic evolution and exhumation of Taiwan. Tectonics, 26(6), TC6001. https://doi.org/10.1029/2006TC002064
Biq, C. C. (1965). The eastern Taiwan rift. Petroleum Geology of Taiwan, 4, 93–106.
Bodnar, R. J. (1993). Revised equation and table for determining the freezing point depression of H₂O-NaCl solutions. Geochimica et Cosmochimica Acta, 57(3), 683–684. https://doi.org/10.1016/0016-7037(93)90378-A
Buseck, P. R., & Beyssac, O. (2014). From organic matter to graphite: Graphitization. Elements, 10(6), 421–426. https://doi.org/10.2113/gselements.10.6.421
Chang, C., Angelier, J., Huang, C., & Liu, C. (2001). Structural evolution and significance of a mélange in a collision belt: The Lichi Mélange and the Taiwan arc–continent collision. Geological Magazine, 138(6), 633–651. https://doi.org/10.1017/S0016756801005930
Chen, C. T., Lo, C. H., Wang, P. L., & Lin, L. H. (2022). Extensional mountain building along convergent plate boundary: Insights from the active Taiwan mountain belt. Geology, 50(11), 1245–1249. https://doi.org/10.1130/G50311.1
Chen, C. H. (1985). Chemical characteristics of thermal waters in the Central Range of Taiwan, R.O.C. Chemical Geology, 49, 303–317. https://doi.org/10.1016/0009-2541(85)90165-3
Chen, H. Y., Lee, J. C., Tung, H., Yu, S. B., Hsu, Y. J., & Lee, H. (2012). Determination of vertical velocity field of southernmost Longitudinal Valley in eastern Taiwan: A joint analysis of leveling and GPS measurements. Terrestrial, Atmospheric and Oceanic Sciences, 23(4), 421–436. https://doi.org/10.3319/TAO.2012.04.23.01(TT)
Chen, W. S., Chung, S. L., Chou, H. Y., Zugeerbai, Z., Shao, W. Y., & Lee, Y. H. (2017). A reinterpretation of the metamorphic Yuli belt: Evidence for a middle-late Miocene accretionary prism in eastern Taiwan. Tectonics, 36(2), 188–206. https://doi.org/10.1002/2016TC004454
Chen, W. S., Yeh, J. J., & Syu, S. J. (2019). Late Cenozoic exhumation and erosion of the Taiwan orogenic belt: New insights from petrographic analysis of foreland basin sediments and thermochronological dating on the metamorphic orogenic wedge. Tectonophysics, 750, 56–69. https://doi.org/10.1016/j.tecto.2018.10.013
Collettini, C. (2011). The mechanical paradox of low-angle normal faults: Current understanding and open questions. Tectonophysics, 510(3–4), 253–268. https://doi.org/10.1016/j.tecto.2011.07.015
Conand, C., Mouthereau, F., Ganne, J., Lin, A. T.-S., Lahfid, A., Daudet, M., et al. (2020). Strain partitioning and exhumation in oblique Taiwan collision: Role of rift architecture and plate kinematics. Tectonics, 38(10), e2020TC006073. https://doi.org/10.1029/2020TC006073
Craw, D., Upton, P., Yu, B. S., Horton, T., & Chen, Y. G. (2010). Young orogenic gold mineralisation in active collisional mountains, Taiwan. Mineralium Deposita, 45, 631–646. https://doi.org/10.1007/s00126-010-0292-7
Crespi, J. M., Chan, Y.-C., & Swaim, M. S. (1996). Synorogenic extension and exhumation of the Taiwan hinterland. Geology, 24(3), 247–250. https://doi.org/10.1130/0091-7613(1996)024<0247:SEAEOH>2.3.CO;2
Davis, G. H., & Reynolds, S. J. (1996). Structural geology of rocks and regions (2nd ed.). New York: John Wiley & Sons.
Delaney, P. T., & Pollard, D. D. (1981). Deformation of host rocks and flow of magma during growth of minette dikes and breccia-bearing intrusions near Ship Rock, New Mexico. U.S. Geological Survey Professional Paper, 1202. https://doi.org/10.3133/pp1202
Delaney, P. T., Pollard, D. D., Ziony, J. I., & McKee, E. H. (1986). Field relations between dikes and joints: Emplacement processes and paleostress analysis. Journal of Geophysical Research: Solid Earth, 91(B5), 4920–4938. https://doi.org/10.1029/JB091iB05p04920
Fisher, N. I., Lewis, T., & Embleton, B. J. (1987). Statistical analysis of spherical data. Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9780511564345
Fournier, R. O., & Rowe, J. J. (1966). Estimation of underground temperatures from silica content of water from hot springs and wet-steam wells. American Journal of Science, 264(9), 685–697. https://doi.org/10.2475/ajs.264.9.685
Fuller, C. W., Willett, S. D., Fisher, D., & Lu, C. Y. (2006). A thermomechanical wedge model of Taiwan constrained by fission-track thermochronometry. Tectonophysics, 425(1–4), 1–24. https://doi.org/10.1016/j.tecto.2006.05.018
Grant, M., & Bixley, P. (2011). Geothermal reservoir engineering (2nd ed.). Academic Press. https://doi.org/10.1016/C2009-0-64295-3
Hall, D. L., Sterner, S. M., & Bodnar, R. J. (1988). Freezing point depression of NaCl-KCl-H₂O solutions. Economic Geology, 83(1), 197–202. https://doi.org/10.2113/gsecongeo.83.1.197
Hancock, P. L. (1985). Brittle microtectonics: Principles and practice. Journal of Structural Geology, 7(3–4), 437–457. https://doi.org/10.1016/0191-8141(85)90048-3
Haüy, R.-J. (1801). Traité de minéralogie (Vols. 1–5). Paris: Chez Louis.
Healy, D. (2009). Anisotropy, pore fluid pressure and low angle normal faults. Journal of Structural Geology, 31(6), 561–574. https://doi.org/10.1016/j.jsg.2009.03.001
Henry, D. G., Jarvis, I., Gillmore, G., & Stephenson, M. (2019). Raman spectroscopy as a tool to determine the thermal maturity of organic matter: Application to sedimentary, metamorphic and structural geology. Earth-Science Reviews, 198, 102936. https://doi.org/10.1016/j.earscirev.2019.102936
Hsu, T. L. (1956). Geology of the Coastal Range, eastern Taiwan. Bulletin of the Geological Survey of Taiwan, 8, 39–64. https://doi.org/10.1088/0034-4885/68/6/R02
Intergovernmental Panel on Climate Change. (2019). Global warming of 1.5 ºC: Special report. https://www.ipcc.ch/sr15/
Burg, J.-P. (2017). Paleo-stress analysis from fault data. [Online lecture]. ETH Zurich. Retrieved from https://files.ethz.ch/structuralgeology/jpb/files/English/5paleostress.pdf
Burg, J.-P. (2020). Brittle faulting. [Online lecture]. ETH Zurich. Retrieved from https://files.ethz.ch/structuralgeology/jpb/files/english/2faulting.pdf
Jolly, R. J. H., & Sanderson, D. J. (1997). Mohr opening preexisting fracture. Journal of Structural Geology, 19(8), 887–892. https://doi.org/10.1016/S0191-8141(97)00008-6
Kalyuzhnyi, V. A., & Koltun, L. I. (1953). Some data on pressures and temperatures during formation of minerals in Nagol’nyy Kryazh, Donets Basin. Minerals Sborink Lvov Geological Obshch, 7, 67–74.
Karingithi, C. W. (2009). Chemical geothermometers for geothermal exploration. In Short Course IV on Exploration for Geothermal Resources. United Nations University Geothermal Training Program, Lake Naivasha, Kenya, 1–22. Retrieved from https://orkustofnun.is/gogn/unu-gtp-sc/UNU-GTP-SC-09-0202.pdf
Lahfid, A., Beyssac, O., Deville, E., Negro, F., Chopin, C., & Goffé, B. (2010). Evolution of the Raman spectrum of carbonaceous material in low-grade metasediments of the Glarus Alps (Switzerland). Terra Nova, 22(5), 354–360. https://doi.org/10.1111/j.1365-3121.2010.00956.x
Lambrecht, G., & Diamond, L. W. (2014). Morphological ripening of fluid inclusions and coupled zone-refining in quartz crystals revealed by cathodoluminescence imaging: Implications for CL-petrography, fluid inclusion analysis and trace-element geothermometry. Geochimica et Cosmochimica Acta, 124, 85–101. https://doi.org/10.1016/j.gca.2013.09.014
Lee, Y. H., Chen, C. C., Liu, T. K., Ho, H. C., Lu, H. Y., & Lo, W. (2006). Mountain building mechanisms in the Southern Central Range of the Taiwan Orogenic Belt – From accretionary wedge deformation to arc–continental collision. Earth and Planetary Science Letters, 252(3–4), 413–422. https://doi.org/10.1016/j.epsl.2006.09.047
Liou, J. G. (1981). Recent high CO₂ activity and Cenozoic progressive metamorphism in Taiwan. Memoir of the Geological Society of China, 4, 551–581.
Liu, T. K. (1982). Tectonic implication of fission track ages from the Central Range, Taiwan. Bulletin of the Geological Society of China, 25, 22–37.
Mahajan, D. (2021). The enormous potential of geothermal energy. Bigwit Energy. Retrieved from https://www.bigwitenergy.com
Melillo, J. M., Richmond, T. C., & Yohe, G. W. (Eds.). (2014). Highlights of climate change impacts in the United States: The Third National Climate Assessment. U.S. Global Change Research Program. https://doi.org/10.7930/J0Z31WJ2
Morrow, C. A., Moore, D. E., & Lockner, D. A. (2001). Permeability reduction in granite under hydrothermal conditions. Journal of Geophysical Research: Solid Earth, 106(B12), 30551–30560. https://doi.org/10.1029/2001JB000522
National Climate Assessment. (2014). Climate change impacts in the United States. U.S. Global Change Research Program. Retrieved from https://nca2014.globalchange.gov/
Phillips, W. J. (1974). The development of vein and rock textures by tensile strain crystallization. Journal of the Geological Society, 130(5), 441–448. https://doi.org/10.1144/gsjgs.130.5.0441
Potter, R. W. II. (1977). Pressure corrections for fluid-inclusion homogenization temperatures based on the volumetric properties of the system NaCl-H₂O. Journal of Research of the U.S. Geological Survey, 5(5), 603–607.
Ramsay, J. G., & Huber, M. I. (1983). The techniques of modern structural geology (Vol. 1). London: Academic Press.
Ramsay, J. G. (1980). The crack-seal mechanism of rock deformation. Nature, 284(5751), 135–139. https://doi.org/10.1038/284135a0
Roedder, E. (1984). Fluid inclusions (Vol. 12). Reviews in Mineralogy, Mineralogical Society of America.
Roedder, E., & Bodnar, R. J. (1980). Geologic pressure determinations from fluid inclusion studies. Annual Review of Earth and Planetary Sciences, 8, 263–301. https://doi.org/10.1146/annurev.ea.08.050180.001403
Rosso, K. M., & Bodnar, R. J. (1995). Microthermometric and Raman spectroscopic detection limits of CO₂ in fluid inclusions and the Raman spectroscopic characterization of CO₂. Geochimica et Cosmochimica Acta, 59(22), 3961–3975. https://doi.org/10.1016/0016-7037(95)00287-4
Scotti, O., & Cornet, F. H. (1994). In situ evidence for fluid-induced aseismic slip events along fault zones. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 31(4), 347–358. https://doi.org/10.1016/0148-9062(94)92300-8
Secor, D. T. (1965). Role of fluid pressure in jointing. American Journal of Science, 263(8), 633–646. https://doi.org/10.2475/ajs.263.8.633
Seno, T. (1977). The instantaneous rotation vector of the Philippine Sea Plate relative to the Eurasian Plate. Tectonophysics, 42(2–4), 209–226. https://doi.org/10.1016/0040-1951(77)90168-8
Shepherd, T. J., Rankin, A. H., & Alderton, D. H. M. (1985). A practical guide to fluid inclusion studies. Glasgow: Blackie.
Sibson, R. H. (1985). A note on fault reactivation. Journal of Structural Geology, 7(6), 751–754. https://doi.org/10.1016/0191-8141(85)90150-6
Sibson, R. H. (2000). Fluid involvement in normal faulting. Journal of Geodynamics, 29(3–5), 469–499. https://doi.org/10.1016/S0264-3707(99)00042-3
Sibson, R. H. (2003). Brittle failure controls on maximum sustainable overpressure in different tectonic regimes. American Association of Petroleum Geologists Bulletin, 87(6), 901–908. https://doi.org/10.1306/01290300181
Sibson, R. H. (2020). Preparation zones for large crustal earthquakes consequent on fault-valve action. Earth, Planets and Space, 72(1), 31. https://doi.org/10.1186/s40623-020-01158-5
Silvio, S., Tenthorey, E., Cox, S., & Fitzgerald, J. (2007). Permeability evolution in quartz fault gouge under hydrothermal conditions. Journal of Geophysical Research: Solid Earth, 112(B7), B07202. https://doi.org/10.1029/2006JB004828
Sorby, H. C. (1858). On the microscopical structure of crystals, indicating the origin of minerals and rocks. Quarterly Journal of the Geological Society, 14(1–2), 453–500. https://doi.org/10.1144/GSL.JGS.1858.014.01-02.49
Van der Pluijm, B. A., & Marshak, S. (2004). Earth structure: An introduction to structural geology and tectonics (2nd ed.). New York: W.W. Norton & Company.
Vavryčuk, V. (2014). Iterative joint inversion for stress and fault orientations from focal mechanisms. Geophysical Journal International, 199(1), 69–77. https://doi.org/10.1093/gji/ggu224
Verma, M. P. (2000). Chemical thermodynamics of silica: A critique on its geothermometer. Geothermics, 29(3), 323–346. https://doi.org/10.1016/S0375-6505(00)00013-8
Vigneresse, J.-L., Tikoff, B., & Améglio, L. (1999). Modification of the regional stress field by magma intrusion and formation of tabular granitic plutons. Tectonophysics, 302(3), 203–224. https://doi.org/10.1016/S0040-1951(98)00290-3
Willett, S. D., Fisher, D., Fuller, C., Yeh, E. C., & Lu, C. Y. (2003). Erosion rates and orogenic wedge kinematics in Taiwan inferred from fission-track thermochronometry. Geology, 31(11), 945–948. https://doi.org/10.1130/G19702.1
Wu, Y. M., Zhao, L., Chang, C. H., & Hsu, Y. J. (2008). Focal-mechanism determination in Taiwan by genetic algorithm. Bulletin of the Seismological Society of America, 98(2), 651–661. https://doi.org/10.1785/0120070163
Yamaji, A., Sato, K., & Tonai, S. (2010). Stochastic modeling for the stress inversion of vein orientations: Paleostress analysis of Pliocene epithermal veins in southwestern Kyushu, Japan. Journal of Structural Geology, 32(8), 1137–1146. https://doi.org/10.1016/j.jsg.2010.06.002
Yamamoto, J., Ando, J., Kagi, H., Inoue, T., Yamada, A., Yamazaki, D., & Irifune, T. (2008). In situ strength measurements on natural upper-mantle minerals. Physics and Chemistry of Minerals, 35(5), 249–257. https://doi.org/10.1007/s00269-008-0217-6
Yeh, E. C. (2004). Structural evolution of slate belts: Examples from Taiwan and eastern Pennsylvania [Ph.D. thesis]. The Pennsylvania State University.
Yen, T. P., Sheng, C. C., Keng, W. P., & Yang, Y. T. (1956). Some problems on the Mesozoic formation of Taiwan. Bulletin of the Geological Survey of Taiwan, 8, 1–14.
Yu, S. B., Chen, H. Y., & Kuo, L. C. (1997). Velocity field of GPS stations in the Taiwan area. Tectonophysics, 274(1–3), 41–59. https://doi.org/10.1016/S0040-1951(96)00297-1
Zhang, Y. G., & Frantz, J. D. (1987). Determination of the homogenization temperatures and densities of supercritical fluids in the system NaCl-KCl-CaCl₂-H₂O using synthetic fluid inclusion. Chemical Geology, 64(3–4), 335–350. https://doi.org/10.1016/0009-2541(87)90077-1
工業技術研究院 (2013)。臺灣深層地溫及增強型地熱資源發電潛能初步評估。西太平洋地質科學, 13, 135–152。
工業技術研究院 (1994)。臺灣地熱資料彙編。經濟部能源會委託,共 644 頁。
工業技術研究院 (2023)。區域地熱探勘與重點潛能評估-台東地區期末報告書。
工業技術研究院 (2024)。臺東縣紅葉地區地質模型建置與資源潛能評估(1/2)。
台灣中油股份有限公司 (1984)。臺東縣紅葉地熱區測溫井報告。臺灣油礦探勘總處地熱處。
台灣中油股份有限公司 (1985)。臺東縣紅葉地熱區中油紅葉一號井地下地質報告。臺灣油礦探勘總處地熱處。
周心怡 (2004)。拔靴法 (Bootstrap) 之探討及其應用。國立中央大學碩士論文,共 61 頁。
林士翔 (2023)。板岩異向性熱-力耦合破壞準則研究。國立陽明交通大學土木工程學系碩士論文。
林偉雄、林啟文、游明聖 (1996)。中央山脈南段鹿野溪地區之地質構造研究。經濟部中央地質調查所年報, 八十四年度, 20–25。
林啟文、林偉雄 (2005)。臺灣東部鹿野地區之地質構造研究。經濟部中央地質調查所彙刊, 18, 29–52。
徐乙君 (2019)。臺灣中央山脈東翼的活動構造。國立中央大學地球科學學系博士論文。桃園縣。
張郁敬 (2022)。臺灣東部鹿野溪變質岩區淺層地熱地質構造模型之研究:地表線型三維建構及裂隙再活化分析。國立臺灣師範大學地球科學系碩士論文。
張荐宇 (2019)。板岩葉理之非線性破壞準則及其邊坡穩定分析應用。國立臺灣大學土木工程學系碩士論文。
曹恕中 (1996)。臺灣中央山脈變質沉積岩伊萊石結晶度鋯石核飛跡年代和鉀氬年代之地質意義。國立臺灣大學地質科學研究所碩士論文,臺北市。
莊朝棟 (2012)。溫室氣體排放減量之推行研究。嘉南藥理科技大學環境工程與科學系碩士論文。
陳柏淳、黃姿榕 (2012)。臺灣溫泉分布圖。經濟部中央地質調查所彙刊, 25, 1–15。
陳炳權 (2017)。造山運動期間地殼動力演化:以華南沿海金門島為例。國立臺灣師範大學理學院地球科學研究所碩士論文。
程正 (1993)。以液包體與熱螢光技術探討屏風山地區金礦礦化作用與探勘的可行性。國立成功大學地球科學系碩士論文。
黃豐仁 (2006)。台灣東南海域弧陸碰撞區地震定位與大地應力場。國立中正大學地震研究所暨應用地球物理研究所碩士論文。
楊昭男 (1995)。臺灣地質系列第 6 號:臺灣的地質構造現象。台北:經濟部中央地質調查所。
楊凱翔 (2021)。台灣中央山脈東翼玉里帶東側及板岩帶變形歷史研究。國立臺灣大學地質科學研究所碩士論文。
經濟部中央地質調查所 (2019)。臺灣東部地區空中磁力探測:三年總報告。經濟部中央地質調查所委辦計畫報告,共 241 頁。
經濟部能源局 (2015)。能源知識庫。
經濟部能源局 (2020)。能源轉型白皮書 109 年度執行報告。取自 https://www.ey.gov.tw/File/BA3C9C6ED4C311C3?A=C
經濟部能源局 (2024)。112 年度全國電力資源供需報告。
葉恩肇 (2019)。臺東鹿野溪巨視折彎背斜之構造分析與機制探討。國立臺灣師範大學地球科學系所博士論文。
廖珙含 (2011)。臺灣中部橫貫公路大禹嶺地區石英脈發育之研究。國立臺北科技大學資源工程研究所碩士論文。
潘啟平 (2023)。地質資源開發分析評估與現地應力。土木水利, 50(6), 45–52。
鄧屬予、宋聖榮、葉恩肇、林殿順、劉佳玫、蔡宜伶 (2013)。從大地構造看台灣地熱潛能。西太平洋地質科學, 13(2), 2–38。
盧煥章 (1990)。流體-熔體包裹體。地球化學, 3, 225–229。
盧煥章、范宏瑞、倪培、歐光羽、沈昆、張文准 (2004)。流體包裹體。北京:科學出版社,共 491 頁。
謝秉志 (2022)。台灣地熱發展實務:政府多元化再生能源開發。風險社會研究中心,50–60。
魏稽生、譚立平 (1999)。臺灣地質系列第 12 號:臺灣非金屬經濟礦物。經濟部中央地質調查所。