研究生: |
鄭杏倩 Cheng Hsin-Chien |
---|---|
論文名稱: |
探討台灣映山紅組杜鵑的親緣關係 The phylogenetic study of Rhododendron sect. Tsutsusi in Taiwan |
指導教授: |
王震哲
Wang, Jenn-Che |
學位類別: |
碩士 Master |
系所名稱: |
生命科學系 Department of Life Science |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 中文 |
論文頁數: | 63 |
中文關鍵詞: | 杜鵑 、親緣關係 、RPB2 |
英文關鍵詞: | Rhododendron, phylogeny, RPB2 |
論文種類: | 學術論文 |
相關次數: | 點閱:197 下載:2 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
台灣的映山紅組杜鵑花(Rhododendron sect. Tsutsusi),約十個物種,外表形態上皆極為相近。這些形態相近的類群中,除了唐杜鵑(R. simsii)之外,都屬於台灣特有種,許多例子指出,物種在新形成的年輕島嶼中常有快速演化,進而種化的現象。台灣的映山紅組杜鵑花特有種的比例如此高,加上台灣屬於年輕型島嶼,推測這些形態極為相近的杜鵑可能是近期快速演化的結果。本研究利用母系遺傳之葉綠體基因matK和trnK的內顯子(intron)片段以及核基因RPB2-i intron 2和ITS片段,探討台灣產杜鵑花屬映山紅組植物的親緣關係及演化歷史。
葉綠體基因matK和trnK intorn片段建構的親緣關係圖結果,將台灣映山紅組杜鵑花歸為主要的三群;RPB2-i intron 2片段建構的基因樹將十種杜鵑花歸為主要的兩大群,此片段中除了R. oldhamii以外,其他種類RPB2-i基因片段都帶有兩個copies的現象,且
R. rubropilosum的不同copy分別歸到不同的兩個大群中;而ITS片段所建構的親緣關係圖在本組杜鵑中無解析力。以上親緣關係結果、加上R. rubropilosum的遺傳歧異度最高,再加上共祖時間的計算比較,確認R. rubropilosum為一雜交起源種。
利用葉綠體以及多copy的核基因片段,本研究最後將台灣映山紅組的十種杜鵑花歸為四群:第一群包含R. simsii、R. longiperulatum、R. nakaharai、R. kanehirai和R. noriakianum;第二群包含R. taiwanalpinum、R. breviperulatum和
R. lasiostylum;第三群為R. oldhamii;第四群為
R. rubropilosum,此結果與Yamazaki(1996)形態分類研究結果比較,除了R. rubropilosum在本研究中發現為一獨立的雜交起源種之外,其他物種的親緣關係與其形態的歸群結果相吻合,因此配合分子研究的結果,更能詳盡的解釋台灣映山紅組杜鵑花的親緣關係。
最後,以本研究結果推測台灣映山紅祖杜鵑花可能有三個以上的來源,但由於未蒐集到此組分布在鄰近地區的物種,所以此推測的證據並不足。未來若想要探討台灣映山紅組杜鵑花的更詳盡的演化歷史,應詳盡蒐集此組杜鵑花所有的物種以及使用,才能更進一步的了解台灣映山紅組杜鵑花起源與分化。
Rhododendron sect. Tsutsusi in Taiwan comprises of 10 species. These species are very similar morphologically and are all endemic except R. simsii. Many examples point out that rapid evolution and subsequent speciation are often occurred on newly formed island. The endemic feature of these species and the newly formed island feature of Taiwan suggest that Rhododendron sect. Tsutsusi in Taiwan may be a result of fast evolution. This study uses cpDNA matK and trnK intron sequences and nuclear DNA RPB2-i intron 2 and ITS sequences to investigate the phylogenetic relationship of these closely related species .
Phylogeny tree constructed by matK and trnK intron sequence shows three major groups; and which constructed by RPB2-i intron 2 sequence shows two major groups. The author discovers that RPB2-i sequences of all species have two copies except R. oldhamii, besides, different copies of
R. rubropilosum are separately grouped into two different groups. However, phylogenetic tree constructed by ITS sequences is not well resolved. From the results above, the highest genetic diversity of R. rubropilosum, and the comparison of coalescent time together, the author infers that R. rubropilosum is a hybrid origin.
Combine the phylogenetic results of cpDNA trnK-matK intron and low copy number RPB2-i intron 2 sequenses, Rhododendron sect. Tsutsusi in Taiwan can be classified into four groups: the first group comprises of R. simsii, R. longiperulatum,R. nakaharai,R. kanehirain, and
R. noriakianum; the second group comprises of
R. taiwanalpinum, R. breviperulatum; and R. lasiostylum; the third group comprises of R. oldhamii; and the last group comprises of R. rubropilosum. Phylogenetic relationship based on molecular data is coincident with the morphological treatment, except R. rubropilosum. Therefore, the results based on molecular data can unmask more inconspicuous information to infer the phylogenetic of Rhododendron sect. Tsutsusi in Taiwan.
Finally, based on the results, the author speculates there may be at least 3 independent origins of these closely related species. However, the author cannot ascertain that the speculation is accurate since the lack of samples of Rhododendron sect. Tsutsusi . Therefore, collecting more samples and using more sensitive markers in the future are necessary to study more about the origin and the divergence of Rhododendron sect. Tsutsusi in Taiwan.
呂勝由,楊遠波。1989。台灣杜鵑花屬植物之訂正。林業試驗所研究報告季刊4(4):155-166。
何明友。1994。中國植物誌第五十七卷第二分冊:378-435。科學出版社。
沈中桴。1996。台灣的生物地理:1. 背景。台灣省立博物館年刊39:387-428。
沈中桴。1997。台灣的生物地理:2. 一些初步思考與研究。台灣省立博物館年刊40:361-450。
李德銖,高連明,楊俊波,張長芹。2002。基于ITS序列分析探討杜鵑屬映山紅亞屬的組間關係。雲南植物研究24 (3):313-320。
金平亮三。1936。台灣樹木誌。537-549頁。
范明仁,王昭月,羅舜方,曾彥學。2003。台灣原生杜鵑屬(Rhododendron spp.)種源遺傳歧異性之分析。中華農業研究就52:258-267。
黃士穎,徐國凱。2001。應用葉綠體trnF-trnL核酸序列探討台灣八種杜鵑花之分子親緣關係。台灣林葉科學24 (3):153-160。
蔡奇助,蔡素蕙,黃勝忠。1999。台灣原生杜鵑核糖體核酸內轉錄間隔區之選殖及分析。台中農業改良場研究彙報64:13-26。
Álvarez, I, and J. F. Wendel. 2003. Ribosomal ITS sequences and plant phylogenetic inference. Mol. Phylogenet. Evol. 29: 417-434.
Bailey, C. D., G. C. Timothy, A. H. Stephen, and E. H. Colin. 2003. Characterization of angiosperm nrDNA polymorphism, paralogy, and pseudogenes. Mol. Phylogenet. Evol. 29: 435-255.
Barrier, M., B. G. Baldwin, R. H. Robichaux, and M. D. Purugganan.1999. Interspecific hybrid ancestry of a plant adaptive radiation: allopolyploidy of the Hawaiian silversword alliance (Asteraceae) inferred from floral homeotic gene duplications. Mol. Biol. Evol. 16(8): 1105-1113.
Comes, H. P., A, Tribsch, and C. Bittkay. 2008. Plant speciation in continental island floras as exemplified by Nigella in the Aegean archipelago. Phil. Trans. R. Soc. B 363, 3083–3096.
Drummond, A. J., and A. Rambaut. 2007. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol.Biol. 7:214.
Doyle, J. J., and J. L. Doyle. 1990. A rapid total DNA preparation procedure for fresh plant tissue. Focus 12: 13-15.
Fortune, P. M., N. Pourtau, N. Viron, and M. L. Ainouche. 2008. Molecular phylogeny and reticulate origins of the polyploidy Bromus species from section Genea (Poaceae). Am. J. Bot. 95(4):454-464.
Gao, L. M., J. G. Yang, C. Q. Zhang, and D. Z. Li 2002. Phylogenetic relationship of subgenus Tsutsusi (Rhododendron) based on ITS sequences. Acta Bot. Yunnanica 24(3): 313-320.
Geiger, J. M, and O. T. A. Ranker. 2004. Molecular phylogenetics and historical biogeography of Hawaiian Dryopteris (Dryopteridaceae). Mol. Phylogenet. Evol.
34:392-407.
Goetsch, L., A. J. Eckert, and B. D. Hall. 2005. The molecular systematics of Rhododendron (Ericaceae): a phylogeny based upon RPB2 gene sequences. Syst. Bot. 30(3): 616-626.
Goncalves, H., I. M. Solano, N. Ferrand, and M. G. Paris. 2007. Conflicting phylogenetic signal of nuclear vs mitochondrial DNA markers in midwife toads (Anura, Discoglossidae, Alytes): Deep coalescence or ancestral hybridization? Mol. Phylogenet. Evol. 44: 494-500.
Good, R. 1953. The Geography of Flowering plants. Longmans, London.Hall, T. A. 1999. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Window95/98/NT. Nucl. Acids. Symp. Ser. 41: 95-98.
Hatushima S. 1980. Origin of the flora in the Ryukyu Islands. In K. Kizaki [ed.], Natural history of the Ryukyus, 113–123. Tsukiji-shokan, Tokyo, Japan (in Japanese)
Hsu, C. C. 1973. Biosystematic investigation on the Rhododendrons of Taiwan. Proc. Natl. Sci. Counc. 6: 13-50.
Javier, F. O., K. J. Robert, and S. G. Arnoldo. 1995. Chloroplast DNA evidence of colonization, adaptive radiation, and hybridization in the evolution of Macaronesian flora. Proc. Natl. Acad. Sci USA 93: 4085-4090.
Kim, S. T, and M. J. Donoghue. 2008. Incongruence between cpDNA and nrITS trees indicates extensive hybridization within Eupersicaria (Polygonaceae). Amer. J. Bot. 95(9): 1122-1135.
Kim, S. T., S. E. Sultan, and M. J. Donoghue. 2008. Allopolyploid speciation in Persicaria (Polygonaceae): Insights from a low-copy nuclear region. Proc. Natl. Acad. Sci. USA 105(34): 12370-12375.
Kumar. S., K. Tamura, and M. Nei. 2004. MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinformatics 5: 150-163.
Kurashige, Y., J. I. Etoh, T. Handa, K. Takayanagi, and T. Yukawa. 2001. Sectional relationships in the genus Rhododendron (Ericaceae): evidence from matK and trnK intron sequences. Pl. Syst. Evol. 228: 1-14.
Li, H. L. 1978. Rhododendron. In Li, H. L. et al. (eds.) Flora of Taiwan. 4: pp. 23-37..
Lu, S. Y., and Y. P. Yang. 1998. Rhododendron. In. Huang, T. C. et al. (eds.), Flora of Taiwan 2nd edition.4: pp. 22-33.
Luo, J., N. Yoshikawa, M. C. Hodson, and B. D. Hall. 2007. Duplication and paralog sorting of RPB2 and RPB1 genes in core eudicots. Mol. Phylogenet. Evol. 44: 850-862.
Mile, R. I., R. J. Abbott, K. Wolff, and D. F. Chamberlain. 1999. Hybrdization among sympatric species of Rhododendron (Ericaceae) in Turkey: morphological and molecular evidence. Am. J. Bot. 86(12): 1776-1785.
Mile, R. I., S. Terzioglu, and R. J. Abbott. 2004. Origin and maintenance of Rhododendron x sochadzeae, a fertile F1 hybrid which occupies an ecotone between R. ponticum and R. caucasicum in Turkey. Turk. J. Bot. 28:83-100.
Moller, M, and Q. C. B. Cronk. 1997. Phylogeny and disjunct distribution: evolution of Saintpaulia (Gesneriaceae): Proc. R. Soc. Lond. B. 264: 1827-1836.
Moody, M. L, and D. H. Les. 2002. Evidence of hybridity in invasive watermilfoil (Myriophyllum) populations. Proc. Natl. Acad. Sci. USA 99(23): 14867-14871.
Oxelman, B., N. Yoshikawa., B. L. McConaughy., J. Luo., A. L. Denton, and B. D. Hall. 2004. RPB2 gene phylogeny in flowering plants, with particular emphasis on asterids. Mol. Phylogenet. Evol. 32: 462-479.
Pfeil. B. E., C. L. Brubaker, L. A. Craven, and M. D. Crisp. 2004. Paralogy and orthology in the Malvaceae rpb2 gene family: investigation of gene duplication in Hibiscus. Mol. Biol. Evol. 21(7): 1528-1437.
Popp, M., A. Gizaw, S. Nemomissa, J. Suda, and C. Brochmann. 2008. Colonization and diversification in the African ‘sky islands’ by Eurasian Lychnis L. (Caryophyllaceae). J. Biogeogr. 35: 1016-1029.
Posada, D., and K. A. Crandall. 1998. Modeltest: testing the model of DNA substitution. Bioinformatics 14: 817-818.
Provan, J., N. Soranzo, N. J. Silson, D. B. Goldstein, and W. Powell. 1999. A low mutation rate for chloroplast microsatellites. Genetics 153: 943-947.
Rieseberg, L. H. (2001) Chromosomal rearrangements and speciation. Trends Ecol. Evol. 16: 351-358.
Richard, I. M., J. A. Richard, W. W. Kirsten, and F. C. David. 1999. Hybridization among sympatric species of Rhododendron (Ericaceae) in Turkey: Morphological and molecular evidence. Am. J. Bot. 86(12): 1776-1785.
Ronquist, F., J. P. Huelsenbeck. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics. 19:1572–1574.
Rozas, J., J. C. Sánchez-DelBarrio, X. Messeguer, and R. Rozas. 2003. DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19: 2496-2497.
Sharma, A. K, and A. Sharma. 2005. Plant Genome – Biodiversity and Evolution. Science Publishers. pp.57-65.
Sleumer, H. 1949. Ein System der Gattung Rhododendron L. Bot. Jahrb. Syst. 74: 511-553.
Soltis, D. E., P. S. Soltis, and F. F. Doyle. 1998. Molecular systematics of plants II: Kluver Academic Publishers. p. 16.
Swofford, D. L. 1998. PAUP*. Phylogenetic analysis using parsimony. Version 4.0. beta. Sinauer, Sunderland, MA.
Tsai, C. C., S. C. Huang, C. H. Chen, Y. H. Tseng, P. L. Huang, S. H. Tsai, and C. H. Chou. 2003. Genetic relationships of Rhododendron (Ericaceae) in Taiwan based on the sequence of the internal transcribed spacer of ribosomal DNA. J. Hort. Sci. Biotech. 78(2): 234-240.
Wendel, J, F, and J. J. Doyle. 1998. Phylogenetic incongruence: window into genome history and molecular evolution. Molecular systematics of plants II. Kluwer Academic Press, Dordrecht. pp. 265-296.
Wendel, J. F., A. Schnabel, and T. Seelanan. T. 1995. Bidirectional interlocus concerted evolution following allopolyploid speciation in cotton (Gossypium). Proc. Natl. Acad. Sci. USA 92: 280-284.
Wilson, E. H. 1925. The rhododendrons of eastern China, the Bonin and Liukiu islands and of Formosa. J. Arnold. Arb. 8: ,-191.
Yamazaki, T. 1996. A revision of the genus Rhododendron in Japan, Taiwan, Korea and Sakhalin. Minoru OKADA, Tsumura Laboratory.
Zang, J. L., C. Q. Zang, L. M. Gao, J. B. Yang., and H. T. Li. 2007. Natural hybridization origin of Rhododendron agastum (Ericaceae) in Yunnan, China: inferred from morphological and molecular evidence. J. Plant Res. 120: 457-463.