簡易檢索 / 詳目顯示

研究生: 林恩綺
Lin, En-Chi
論文名稱: 低維度手性鈣鈦礦暨高分子之光學特性研究與分析
Low-Dimensional Chiral Perovskites and Polymers Optical Analysis and Research
指導教授: 趙宇強
Chao, Yu-Chiang
口試委員: 陳奕君
Cheng, I-Chun
趙宇強
Chao, Yu-Chiang
駱芳鈺
Lo, Fang-Yuh
口試日期: 2022/06/23
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 91
中文關鍵詞: 鈣鈦礦手性鈣鈦礦共軛有機高分子
英文關鍵詞: Perovskite, Chiral perovskite, Conjugate polymer
研究方法: 實驗設計法行動研究法準實驗設計法參與觀察法
DOI URL: http://doi.org/10.6345/NTNU202200694
論文種類: 學術論文
相關次數: 點閱:114下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 致謝 i 摘要 ii Abstract iv 目次 vi 表次 ix 圖次 x 第一章 緒論 1 1-1 前言 1 1-2 研究動機 2 第二章 材料簡介與原理 4 2-1 鈣鈦礦材料介紹 4 2-1-1 鈣鈦礦命名由來 4 2-1-2 鈣鈦礦結構 5 2-1-3 晶型結構與穩定性 6 2-1-4 鈣鈦礦材料維度 7 2-1-5 鈣鈦礦材料展望 8 2-2 手性鈣鈦礦材料介紹 9 2-2-1 手性/掌性/旋光性(Chirality) 9 2-2-2 手性引入鈣鈦礦 10 2-2-3 手性鈣鈦礦結構與維度 11 2-2-4 手性鈣鈦礦的應用與展望 11 2-3 高分子有機材料介紹 12 2-3-1 共軛高分子/共軛聚合物 (Conjugated Polymer) 12 2-3-2 共軛高分子導電機制 13 2-4 實驗理論與原理 14 2-4-1 自旋軌道耦合(Spin-orbit coupling,SO coupling) 14 2-4-2 塞曼效應(Zeeman Effect) 15 2-4-3 晶體中的自旋軌道耦合 16 2-4-4 鈣鈦礦材料的Rashba效應 17 2-4-5 圓二色性(Circular dichroism,CD) 18 2-4-6 磁性圓二色性(Magnetic Circular Dichroism) 19 2-4-7 激子離域化(Excition Delocalized) 21 2-4-8 經激子離域化的聚集體(dimer)之光學表現 22 2-4-9 有機發光二極體概述 24 2-4-10 有機發光二極體結構 26 2-4-11 表面鈍化原理 27 2-5 發光原理 28 2-5-1 光致發螢光 29 2-5-2 光致螢光激發光 29 2-5-3 弗蘭克康登原理(Franck condon principle) 30 2-5-4 史多克斯位移(Stokes shift) 32 2-5-5 螢光量子產率(PLQY) 32 2-5-6 量子效率 33 2-5-7 時間單光子計數系統(Time-corrected Single Photon Counting System, TCSPC) 33 3 第三章 實驗儀器與製程 34 3-1 實驗儀器介紹 34 3-1-1 紫外光清洗機 ( UV Ozone Cleaning System ) 34 3-1-2 氮氣手套箱 ( Glove Box ) 34 3-1-3 蒸鍍機(Evaporator) 34 3-1-4 光學顯微鏡(Optical microscope) 34 3-1-5 旋轉塗佈機( Spin Coater ) 34 3-1-6 加熱版( Hot Plate ) 35 3-1-7 電磁加熱攪拌器( Hot Plate ) 35 3-1-8 光致發光光譜儀(Photoluminescence, PL) 35 3-1-9 電致發光光譜儀(Electroluminescence, EL) 35 3-1-10 X光繞射儀(X-Ray Diffraction) 36 3-1-11 圓二色光譜儀(Circular Dichroism and Optical Rotatory Dispersion Spectropolarimeter) 36 3-1-12 時間解析光激螢光TRPL (Time-Resolved Photoluminescence) 36 3-2 鈣鈦礦LED元件 37 3-2-1 蝕刻ITO基板 37 3-2-2 清洗ITO基板 38 3-2-3 組成元件材料介紹 38 3-2-4 鈣鈦礦LED製程條件 42 3-3 手性鈣鈦礦特性研究 44 3-3-1 薄膜材料與製程條件Spin coating 44 3-4 有機高分子材料 47 3-4-1 材料介紹及溶液製備 47 3-4-2 PTB7-Th/PM6/PM7溶液製程條件 48 第四章 結果與討論 49 4-1 鈣鈦礦發光二極體元件 49 4-1-1 不同溶劑對於鈣鈦礦薄膜之影響 50 4-1-2 不同溶劑覆蓋鈣鈦礦層之LED情形 50 4-1-3 QH溶液覆蓋鈣鈦礦層之LED情形結果與討論 52 4-2 手性鈣鈦礦特性研究 53 4-2-1 晶相結構之觀察 53 4-2-2 圓二色光譜量測 55 4-2-3 磁性圓二色光譜量測 63 4-2-4 PL光譜量測與分析觀察 75 4-2-5 載子生命週期之量測與歸納 76 4-2-6 絕對螢光量子產率(PLQY)之量測與歸納 77 4-2-7 原子力顯微鏡(AFM)下薄膜表面樣貌 78 4-2-8 手性鈣鈦礦研究結果與討論 80 4-3 有機高分子激子離域研究 81 4-3-1 PTB7-Th/PM6/PM7變溫PL光譜 81 4-3-2 PTB7-Th/PM6/PM7變濃度PL光譜 83 4-3-3 PTB7-Th/PM6/PM7濃度淬滅現象 84 4-3-4 PTB7-Th/PM6/PM7變濃度PLE和吸收光譜 85 4-3-5 PTB7-Th/PM6/PM7的戴維多夫分裂擬合分析 86 第五章 結論 88 5-1 表面鈍化處理的鈣鈦礦發光二極體元件 88 5-2 手性鈣鈦礦特性研究 88 5-3 有機高分子的激子離域研究 88 參考文獻 89

    1. Chen, B., et al., Imperfections and their passivation in halide perovskite solar cells. Chemical Society Reviews, 2019. 48(14): p. 3842-3867.
    2. Zhang, L., et al., Ultra-bright and highly efficient inorganic based perovskite light-emitting diodes. Nature communications, 2017. 8(1): p. 1-8.
    3. Huang, Y., W.-J. Yin, and Y. He, Intrinsic point defects in inorganic cesium lead iodide perovskite CsPbI3. The Journal of Physical Chemistry C, 2018. 122(2): p. 1345-1350.
    4. Zou, C., et al., Suppressing efficiency roll-off at high current densities for ultra-bright green perovskite light-emitting diodes. ACS nano, 2020. 14(5): p. 6076-6086.
    5. Billing, D.G. and A. Lemmerer, Synthesis and crystal structures of inorganic–organic hybrids incorporating an aromatic amine with a chiral functional group. CrystEngComm, 2006. 8(9): p. 686-695.
    6. Yang, X., et al., Efficient green light-emitting diodes based on quasi-two-dimensional composition and phase engineered perovskite with surface passivation. Nature communications, 2018. 9(1): p. 1-8.
    7. Pulizzi, F., Spintronics. Nature materials, 2012. 11(5): p. 367-367.
    8. Minghao, Z., et al., Construction and optoelectrical properties of chiral perovskite nanomaterials. Progress in Chemistry, 2020. 32(4): p. 361.
    9. Feria, D.N., et al., Exciton Delocalization in Amino-Functionalized Inorganic Mo S 2 Quantum Disks: Giant Davydov Splitting and Exchange Narrowing. Physical Review Applied, 2021. 15(2): p. 024011.
    10. Ziffer, M.E., et al., Tuning H-and J-aggregate behavior in π-conjugated polymers via noncovalent interactions. The Journal of Physical Chemistry C, 2018. 122(33): p. 18860-18869.
    11. Xiao, Z., et al., Thin-film semiconductor perspective of organometal trihalide perovskite materials for high-efficiency solar cells. Materials Science and Engineering: R: Reports, 2016. 101: p. 1-38.
    12. Zhang, L., et al., Interactions between molecules and perovskites in halide perovskite solar cells. Solar Energy Materials and Solar Cells, 2018. 175: p. 1-19.
    13. Cao, D.H., et al., 2D homologous perovskites as light-absorbing materials for solar cell applications. Journal of the American Chemical Society, 2015. 137(24): p. 7843-7850.
    14. Saparov, B. and D.B. Mitzi, Organic–inorganic perovskites: structural versatility for functional materials design. Chemical reviews, 2016. 116(7): p. 4558-4596.
    15. Era, M., et al., Self-organized growth of PbI-based layered perovskite quantum well by dual-source vapor deposition. Chemistry of materials, 1997. 9(1): p. 8-10.
    16. Kelvin, W.T.B., The molecular tactics of a crystal. 1894: Clarendon Press.
    17. Berova, N., K. Nakanishi, and R.W. Woody, Circular dichroism: principles and applications. 2000: John Wiley & Sons.
    18. Ahn, J., et al., Chiral 2D organic inorganic hybrid perovskite with circular dichroism tunable over wide wavelength range. Journal of the American Chemical Society, 2020. 142(9): p. 4206-4212.
    19. Han, J., et al., Recent progress on circularly polarized luminescent materials for organic optoelectronic devices. Advanced Optical Materials, 2018. 6(17): p. 1800538.
    20. Lu, H., et al., Spin-dependent charge transport through 2D chiral hybrid lead-iodide perovskites. Science advances, 2019. 5(12): p. eaay0571.
    21. Manchon, A., et al., New perspectives for Rashba spin–orbit coupling. Nature materials, 2015. 14(9): p. 871-882.
    22. á Piepho, S. and P. á Schatz, Group Theory in Spectroscopy. 1983, Wiley, New York.
    23. Han, B., et al., Magnetic circular dichroism in nanomaterials: New opportunity in understanding and modulation of excitonic and plasmonic resonances. Advanced Materials, 2020. 32(41): p. 1801491.
    24. Cannon, B.L., et al., Large Davydov splitting and strong fluorescence suppression: an investigation of exciton delocalization in DNA-templated Holliday junction dye aggregates. The Journal of Physical Chemistry A, 2018. 122(8): p. 2086-2095.
    25. Jelley, E.E., Molecular, Nematic and Crystal States of I: I-Diethyl--Cyanine Chloride. Nature, 1937. 139(3519): p. 631-631.
    26. Abramavicius, D., et al., Coherent multidimensional optical spectroscopy of excitons in molecular aggregates; quasiparticle versus supermolecule perspectives. Chemical reviews, 2009. 109(6): p. 2350-2408.
    27. Pope, M. and C.E. Swenberg, Electronic processes in organic crystals and polymers. Vol. 56. 1999: Oxford University Press on Demand.
    28. Tsujimura, T., OLED display fundamentals and applications. 2017: John Wiley & Sons.
    29. Schweizer, T., H. Kubach, and T. Koch, Investigations to characterize the interactions of light radiation, engine operating media and fluorescence tracers for the use of qualitative light-induced fluorescence in engine systems. Automotive and Engine Technology, 2021. 6(3): p. 275-287.
    30. You, J., et al., Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility. ACS nano, 2014. 8(2): p. 1674-1680.
    31. Stranks, S.D., et al., Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science, 2013. 342(6156): p. 341-344.
    32. Tong, G., L.K. Ono, and Y. Qi, Recent Progress of All‐Bromide Inorganic Perovskite Solar Cells. Energy Technology, 2020. 8(4): p. 1900961.
    33. Leung, T.L., et al., Mixed Spacer Cation Stabilization of Blue‐Emitting n= 2 Ruddlesden–Popper Organic–Inorganic Halide Perovskite Films. Advanced Optical Materials, 2020. 8(4): p. 1901679.
    34. Lee, J.-W., et al., Rethinking the A cation in halide perovskites. Science, 2022. 375(6583): p. eabj1186.
    35. Odysseas Kosmatos, K., et al., Μethylammonium chloride: a key additive for highly efficient, stable, and up‐scalable perovskite solar cells. Energy & Environmental Materials, 2019. 2(2): p. 79-92.
    36. Har-Lavan, R., et al., Molecular field effect passivation: Quinhydrone/methanol treatment of n-Si (100). Journal of Applied Physics, 2013. 113(8): p. 084909.
    37. Long, G., et al., Spin control in reduced-dimensional chiral perovskites. Nature Photonics, 2018. 12(9): p. 528-533.
    38. Liang, C., et al., Two-dimensional Ruddlesden–Popper layered perovskite solar cells based on phase-pure thin films. Nature Energy, 2021. 6(1): p. 38-45.
    39. Gao, W., et al., Chiral cation promoted interfacial charge extraction for efficient tin-based perovskite solar cells. Journal of Energy Chemistry, 2022. 68: p. 789-796.
    40. Clark, J., et al., Role of intermolecular coupling in the photophysics of disordered organic semiconductors: aggregate emission in regioregular polythiophene. Physical review letters, 2007. 98(20): p. 206406.
    41. Spano, F.C., The spectral signatures of Frenkel polarons in H-and J-aggregates. Accounts of chemical research, 2010. 43(3): p. 429-439.
    42. Benz, F., et al., Concentration quenching of the luminescence from trivalent thulium, terbium, and erbium ions embedded in an AlN matrix. Journal of luminescence, 2014. 145: p. 855-858.

    無法下載圖示 電子全文延後公開
    2027/07/05
    QR CODE