簡易檢索 / 詳目顯示

研究生: 徐悅容
Hsu, Yueh-Jung
論文名稱: 探究國中學生系統互動自我效能及科技接受之程度在你猜我答遊戲中之趣味性及沈浸度與學習表現之相關研究
Exploring Interactive Fun, Flow Experience and Learning Performance Predicted by Google System Interactive Self-Efficacy and Acceptance in a Charade game--Guessing Fun on Junior High School Students
指導教授: 洪榮昭
Hong, Jon-Chao
口試委員: 林博文
Lin, Bou-Wen
陳淑惠
Chen, Shu-hui
洪榮昭
Hong, Jon-Chao
口試日期: 2022/06/30
學位類別: 碩士
Master
系所名稱: 工業教育學系
Department of Industrial Education
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 131
中文關鍵詞: 系統互動自我效能科技接受模式擬人化認知信念語言學習遊戲沈浸
英文關鍵詞: Google system self-efficacy, Technological acceptance model, Humanoid, Cognitive beliefs, Language learning, Game immersion
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202201273
論文種類: 學術論文
相關次數: 點閱:111下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 「學習英語」在與外語相關的學習是一個全球性挑戰。為引導學習者進行歸納推理練習語言學習,本研究基於 Charade 機制改編設計了英語教材,讓學習者隱誨地學習英語名詞、形容詞和動詞。並針對國中的學生,將學生常見的學習內容設計成 Charade 機制,例如動物、海洋生物、鳥類等。通過這種設計,學生可以透過使用手機、平板或智慧音箱進行學習。
    本研究主要使用工具為 Google Assistant 之APP,並以語音或文字輸入方式打開Guessing Fun 你猜我答學習遊戲之介面,讓學生在課程中以遊戲的方式進行學習。本研究之使用感想問卷共計回收179份,並對有效問卷157份進行統計分析,包括驗證性因素分析與結構方程模型分析。統計資料之分析結果為:(一)系統互動自我效能與互動擬人化之間具正相關。(二)系統互動自我效能與遊戲易用性之間具正相關。(三)互動擬人化對遊戲有用性之間具正相關。(四)遊戲易用性對遊戲有用性之間具正相關。(五)遊戲有用性對互動趣味性之間具正相關。(六)遊戲有用性對遊戲沈浸度之間具正相關。(七)互動趣味性對學習表現之間具正相關。(八)遊戲沈浸度對學習表現之間具正相關。(九)系統互動自我效能對學習表現之間具正相關。
    研究結論及建議表示,設計與學習相關之遊戲,將其融入課程可以吸引具有基本英語能力但對傳統教學方法不感興趣的年輕學習者多多地參與其中。未來也希望能夠將這套學習模式融入校園及補教界,讓學習者的學習方式有更多選擇。

    English learning is considered a common challenge for learners around the world. Students can learn by interacting with mobile devices or smart speakers through this new form of learning material. To incurage learners’ inductive reasoning to enhance language learning effectiveness, the present study designed a new English learning material based on the charade mechanism for learners to learn English nouns, adjectives, and verbs implicitly. This study targeted junior high school students and incorporated various contents, for example, animals, ocean creatures, birds, and so on.
    In this study, students used the Google Assistant app to open the Guessing Fun which a learning game with voice or text input. A total of 179 questionnaires were collected, and 157 valid questionnaires were subjected statistical analysis, including confimatory factor analysis and structural equation modeling. The results showed that: (1) Google system self-efficacy can positively predict interactive fun. (2) Google system self-efficacy can positively predict game ease of use. (3) Interactive fun can positively predict usefulness of the game. (4) Game ease of use can positively predict game usefulness. (5) Game usefulness can positively predict interactive fun. (6) Perceived usefulness of the game can positively predict flow experience. (7) Interactive fun can positively predict learning performance. (8) Flow experience can positively predict learning performance. (9) Google system self-efficacy can positively predict learning performance mediated by ease of use, usefulness, interactive fun and flow experience. The result of this study suggests that designing learning-related games and incorporating Charade into the bilingual curriculum can increase leaerning effectivenss among young learners.

    第一章 緒論 1 第一節 研究背景與動機 1 第二節 研究目的與研究問題 3 第三節 名詞釋義 5 第四節 研究範圍與限制 8 第二章 文獻探討 11 第一節 自我效能理論 11 第二節 科技接受模式 16 第三節 Charade「你猜我答」--Guessing Fun設計理論 20 第四節 遊戲興趣與趣味性 24 第三章 研究設計與實施 27 第一節 遊戲說明與介紹 27 第二節 研究流程 38 第三節 研究方法及架構 40 第四節 研究假設 41 第五節 研究對象 44 第六節 研究工具 44 第七節 施測步驟與流程 52 第八節 資料處理與分析 55 第九節 研究倫理 60 第四章 研究結果 61 第一節 學習者基本資料分析 61 第二節 敘述性統計分析 64 第三節 量表項目分析 71 第四節 構面信度與效度分析 85 第五節 整體適配度分析 90 第六節 路徑分析 92 第七節 間接效應分析 95 第八節 差異性分析 97 第五章 結論與建議 99 第一節 研究結論 99 第二節 研究貢獻 102 第三節 研究建議 103 參考文獻 107 附錄 126

    中文文獻
    林芳瑜(2016)。以科技接受模式探討幼兒園教師透過 Facebook 進行親師互動之行為研究(未出版之碩士論文)。國立臺灣師範大學,臺北市。
    林淑瓊、陳煇煌、林衛國、李品萱(2018)。顧客消費體驗預期形成之心理模式—環境心理學觀點。電子商務學報,20(1),33-63。
    李宏敏(2013)。國小教師透過Facebook進行親師互動之意願探討—以嘉義縣國小為例(未出版之碩士論文)。南華大學,嘉義縣。
    吳佳玟(2017)。以修正後科技接受模式探究餐旅群科目使用行動學習提升高職生學習成效(未出版之碩士論文)。國立高雄餐旅大學,高雄市。
    吳明隆(2008)。SPSS操作與應用問卷統計分析實務。臺北市:五南。
    吳明隆(2009)。結構方程式:AMOS的操作與應用(第二版)。臺北市:五南。
    吳明隆、張毓仁(2011)。SPSS (PASW) 與統計應用分析I。臺北市:五南。
    吳萬益、林清河(2002)。行銷研究。臺北市:華泰文化。
    邱皓政(2013)。量化研究與統計分析:SPSS (PASW)資料分析範例解析。臺北市: 五南。
    邱皓政、林碧芳(2017)。統計學:原理與應用(第三版)。臺北市:五南。
    柯妤姍(2019)。以科技接受模式觀點探討公立幼兒園教師應用網路社群軟體進行親師溝通數位化之研究(未出版之碩士論文)。國立臺灣師範大學,臺北市。
    洪新原、梁定澎、張家銘(2005)。科技接受模式之彙總研究。資訊管理學報,12(4),211-234。
    洪維辰(2021)。運動健康信念對運動遊戲的興趣、焦慮及態度與運動表現之相關:以成就情緒理論分析(未出版之碩士論文)。國立臺灣師範大學,臺北市。
    莊懿妃、蔡義清、俞洪亮(2018)。商管研究資料分析:SPSS 的應用。臺北:華泰文化。
    張基成、林冠佑(2016)。從傳統數位學習到遊戲式數位學習―學習成效、心流體驗與認知負荷。科學教育學刊,24(3),221-248。
    陳雯琦(2009)。國小學生的自我效能對神馳效應與學習保留之研究—以三字經紙牌遊戲為例(未出版之碩士論文)。國立臺灣師範大學,臺北市。
    陳冠鳳(2021)。以VR爵士鼓遊戲探究中學生之節奏感增長信念與遊戲焦慮、心流經驗對學習價值及學習成效之相關研究(未出版之碩士論文)。國立臺灣師範大學,臺北市。
    楊勝任、王淑慧(2007)。E化溝通模式在親師溝通的效能與限制研究。2006科技教育課程改革與發展學術研討會論文集,16-22。
    鄒珮甄(2012)。認知專注與社會臨場感對於虚级社群持續使用意圖之影響(未出版之碩士論文)。國立臺中科技大學,臺中市。
    劉瑞啟(2011)。繼續還是不繼續?網路文學作品持續閱讀與沉迷程度之影響(未出版之碩士論文)。國立中央大學,桃園市。
    樓永堅、曾威智(2016)。以後設分析法探討科技接受模式之研究。科技管理學刊,21(2),1-28。
    羅友志、陳碧秀、蔡進發、楊筌傑(2018)。社群網站 Facebook 使用意圖前因之探討。輔仁管理評論,25(2),29-49。
    羅舒璘(2022)。符應教育4.0時代職前師培與在職教育之變革與啟示。臺灣教育評論月刊,11(6),72-76。
    英文文獻
    Adams, D., Nelson, R. R., & Todd, P. (1992). Perceived usefulness, ease of use and usage of information technology: A replication. MIS Quarterly, 16, 229-248.
    Ahtinen, A., & Kaipainen, K. (2020). Learning and teaching experiences with a persuasive social robot in primary school-findings and implications from a 4-month field study. In S. B. Gram-Hansen, T. S. Jonasen, & C. Midden (Eds.), Persuasive Technology, pp. 73-84. Aalborg, Denmark: Springer. doi: 10.1007/978-3-030-45712-9_6
    Alabsi, T. A. (2016). The effectiveness of role play strategy in teaching vocabulary. Theory and Practice in Language Studies, 6(2), 227-234.
    Alemi, M., Meghdari, A., & Ghazisaedy, M. (2015). The impact of social robotics on L2 learners’ anxiety and attitude in English vocabulary acquisition. International Journal of Social Robotics, 7(4), 523-535.  doi: 10.1007/s12369-015-0286-y
    Alharbi, S., & Drew, S. (2014) Using the technology acceptance model in understanding academics’ behavioural intention to use learning management systems. International Journal of Advanced Computer Science and Applications, 5, 143-155. doi: 10.14569/IJACSA.2014.050120
    Arnold, M. J., & Reynolds, K. E. (2003). Hedonic shopping motivations. Journal of Retailing, 79(2), 77-95.
    Bafadal, M. F., & Humaira, H. (2019). The use of Charades games in teaching vocabulary to the juniorhigh school students. Linguistics and ELT Journal, 5(1), 2339-2940. doi: 10.31764/leltj.v12i2.748
    Bakadorova, O., Lazarides, R., & Raufelder, D. (2020). Effects of social and individual school self-concepts on school engagement during adolescence. European Journal of Psychology of Education, 35(1), 73-91. doi: 10.1007/s10212-019-00423-x
    Bandura, A. (1976). Self-reinforcement: Theoretical and methodological considerations. Behaviorism, 4, 135-155.
    Bandura, A. (1977). Self-cfficacy: Toward a unifying theory of behavioral chang. Psychological Review, 84(2), 191-215.
    Bandura, A. (1982). Self-efficacy mechanism in human agency. American Psychologist, 37,122-147.
    Bandura, A. (1986). Social foundations of thought and action: A social cognitive theory. Englewood Cliffs, NJ: Prentice- Hall, Inc.
    Bandura, A., & Watts, R.E. (1996). Self-Efficacy in Changing Societies. Journal of Cognitive Psychotherapy, 10(4), 313-315. doi:10.1891/0889-8391.10.4.313
    Benyon, D. (2010). Designing interactive systems: a comprehensive guide to HCI and interaction design (2nd ed.). Harlow, England: Pearson Education.
    Berk, R. A. (1996). Student ratings of 10 strategies for using humor in college teaching. Journal on Excellence in College Teaching, 7, 71-92.
    Bhattacherjee, A. (2001) Understanding information systems continuance: An expectation-confirmation model. MIS Quarterly, 25(3), 351-370.
    Bickford, P. (1997). Interface design: The art of developing easy-to-use software, Chestnut Hill, MA: Academic Press.
    Blythe, M., & Hassenzahl, M. (2003). The Semantics of Fun: Differentiating Enjoyable Eeperiences. In M. A. Blythe, K. Overbeeke, A. F. Monk, & P. C. Wright (Eds.), Funology: From Usability to Enjoyment (pp. 91-100). Dordrecht, Netherlands: Springer Netherlands.
    Bolotnikova, A., Courtois, S., & Kheddar, A. (2020). Autonomous initiation of human physical assistance by a humanoid. Proceedings of the 2020 29th IEEE International Conference on Robot and Human Interactive Communication, pp. 857-862. doi: 10.1109/RO-MAN47096.2020.9223519
    Bradley, R. L., Browne, B. L., & Kelley, H. M. (2017). Examining the influence of self-efficacy and self-regulation in online learning. College student journal, 51, 518-530.
    Brown, T. A. (2006). Confirmatory factor analysis for applied research. New York, NY: The Guilford Press.
    Chang, C. Y., & Hwang, G. J. (2019). Trends in digital game-based learning in the mobile era: A systematic review of journal publications from 2007 to 2016. International Journal of Mobile Learning and Organisation, 13(1), 68-90.
    Chang, C. W., Lee, J. H., Chao, P. Y., Wang, C. Y., & Chen, G. D. (2010). Exploring the possibility of using humanoid robots as instructional tools for teaching a second language in primary school. Educational Technology & Society, 13(2), 13-24.
    Chen, H. (2006). Flow on the net-detecting web users’ positive affects and their flow states. Computer in Human Behavior, 22(2), 221-233.
    Chen, N. S., Quadir, B., & Teng, D. C. (2011). A Novel approach of learning English with robot for elementary school students. In M. Chang et al. (Eds.), pp. 309-316. Heidelberg, Germany: Springer-Verlag Berlin Heidelberg.
    Cheung, G. W., & Wang, C. (2017). Current approaches for assessing convergent and discriminant validity with SEM: Issues and Solutions. Proceedings of the Academy of Management 2017(1), 12706. doi: 10.5465/AMBPP.2017.12706abstract
    Cho, M. H., & Kim, J. (2013). Students’ self-regulation for interaction with others in online learning environments. The Internet and Higher Education. 17, 69-75. doi: 10.1016/j.iheduc.2012.11.001
    Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences (2nd ed.). Hillsdale, NJ: Lawrence Erlbaum Associates.
    Colliver, Y., & Veraksa, N. (2019). The aim of the game: A pedagogical tool to support young children's learning through play. Learning, Culture and Social Interaction, 21, 296-310.
    Cor, M. K. (2016). Trust me, it is valid: Research validity in pharmacy education research. Currents in Pharmacy Teaching and Learning, 8(3), 391-400.
    Corruble, V., & Ganascia, J. G. (1997). Induction and the discovery of the causes of scurvy: A computational reconstruction. Artificial Intelligence, 91, 205-223.
    Crawford, H. J., (1989). Cognitive and physiological flexibility: Multiple pathways to hypnotic responsiveness, In V. Gheorghui, P. Netter, H. Eysenck, & R. Rosenthal (Eds), Suggestion and Suggestibility: Theory and Research (pp. 155-168). Berlin, Germany: Springer-Verlag.
    Crookall, D. (2007). Second language acquisition and simulation. Simulation & Gaming, 38(1), 6-8. doi: 10.1177/1046878106298609
    Davis, F. D. (1986). A technology acceptance model for empirically testing new end-user acceptance of information technology. Massachusetts Institute of Technology, Boston, MA: Unpublished Doctoral Dissertation.
    Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS quarterly, 13(1), 319-340.
    Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User acceptance of computer technology: A comparison of two theoretical models. Management Science, 35(8), 982-1002.
    Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1992). Extrinsic and intrinsic motivation to user computers in the workplace. Journal of Applied Social Psychology, 22(14), 1111-1132.
    Dicheva, D., Dichev, C., Agre, G., & Angelova, G. (2015). Gamification in education: A systematic mapping study. Educational Technology & Society, 18(3), 75-88.
    Dickey, M. D. (2005). Engaging by design: How engagement strategies in popular computer and video games can inform instructional design. Educational Technology Research and Development, 53, 67-83.
    Dix, A., Finlay, J. E., Abowd, G. D., & Beale. R. (2004). Human-computer interaction (3rd ed., pp.834). London, England: Pearson.
    Donker, A., de Boer, H., Kostons, D., Dignath van Ewijk, C., & van der Werf, M. (2014). Effectiveness of learning strategy instruction on academic performance: A meta-analysis. Educational Research Review, 11, 1-26. doi: 10.1016/j.edurev.2013.11.002
    Draper, S. W. (1999). Analysing fun as a candidate software requirement. Personal Technologies, 3, 117-122.
    Duffy, B. R. (2003). Anthropomorphism and the social robot. Robotics and Autonomous Systems, 42(3-4), 177-190. doi: 10.1016/S0921-8890(02)00374-3
    Fink, J. (2012). Anthropomorphism and human likeness in the design of robots and human-robot interaction. In: Ge, S.S., Khatib, O., Cabibihan, JJ., Simmons, R., Williams, MA. (eds), Social Robotics (pp. 199-208). Heidelberg, Berlin: Springer. doi: 10.1007/978-3-642-34103-8_20
    Fischback, L., & Lee, V. R. (2017). How time gets used in afterschool maker programs. Proceedings of the 7th Annual Conference on Creativity and Fabrication in Education (FabLearn’17), pp. 1-4. doi: 10.1145/3141798.3141810
    Fishbein, M., & Ajzen, I. (1975). Belief, attitude, iantention, and behavior: An introduction to theory and research. Boston, MA: Addison-Wesley.
    Fredricks, J. A., Blumenfeld, P. C., & Paris, A. H. (2004). School engagement: Potential of the concept, state of the evidence. Review of Educational Research, 74(1), 59-109. doi: 10.3102/00346543074001059
    Ganascia, J. G. (1991). Deriving the learning bias from rule properties. In J. E. Hayes, D. Michie, & E. Tyugu (Eds.), Machine intelligence 12: towards an automated logic of human thought (pp. 151-168). Oxford, England: Oxford University Press.
    Garner, R. L. (2006). Humor in pedagogy: How ha-ha can lead to aha! College Teaching, 54(1), 177-180.
    Gómez, R. L., & Gerken, L. (2000). Infant artificial language learning and language acquisition. Trends in Cognitive Sciences, 4(5), 178-186. doi: 10.1016/S1364-6613(00)01467-4
    Guise, V., Chambers, M., Conradi, E., Kavia, S., & Välimäki, M. (2012). Development, implementation and initial evaluation of narrative virtual patients for use in vocational mental health nurse training. Nurse Education Today, 32, 683-689. doi: 10.1016/j.nedt.2011.09.004
    Hair, J. F., Risher, J. J., Sarstedt, M., & Ringle, C. M. (2019). When to use and how to report the results of PLS-SEM. European Business Review, 31(1), 2-24.
    Hall-Phillips, A., Park, J., Chung, T. L., Anaza, N. A., & Rathod, S. R. (2016). I (heart) social ventures: Identification and social media engagement. Journal of Business Research, 69(2), 484-491.
    Heinrich, C., Pennington, R.R., & Kuiper, R. (2012). Virtual case studies in the classroom improve student knowledge. Clinical Simulation in Nursing, 8(8), 353-361.
    Heit, E., & Rotello, C. (2010). Relations between inductive reasoning and deductive reasoning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 36(3), 805-812. doi: 10.1037/a0018784
    Highfield, K. (2010). Robotic toys as a catalyst for mathematical problem solving. Australian Primary Mathematics Classroom, 15(2), 22-27.
    Hocine, N., Gouaïch, A., Cerri, S. A., Mottet, D., Froger, J., & Laffont, I. (2015). Adaptation in serious games for upper-limb rehabilitation: An approach to improve training outcomes. User Modeling and User-Adapted Interaction, 25(1), 65-98.
    Hong, J. C., Hwang, M. Y., Liu, M. C., Ho, H. Y., & Chen, Y. L. (2014). Using a “prediction–observation–explanation” inquiry model to enhance student interest and intention to continue science learning predicted by their internet cognitive failure. Computers & Education, 72, 110-120. doi: 10.1016/j.compedu.2013.10.004
    Hong, J. C., Hwang, M. Y., Tai, K. H., & Chen, Y. L. (2014). Using calibration to enhance students' self-confidence in English vocabulary learning relevant to their judgment of over-confidence and predicted by smartphone self-efficacy and English learning anxiety. Computers & Education, 72, 313-322.
    Hong, J. C., Hwang, M. Y., Tai, K. H., & Lin, P. H. (2017). Intrinsic motivation of Chinese learning in predicting online learning self-efficacy and flow experience relevant to students’ learning progress. Computer Assisted Language Learning, 30(6), 552-574. doi: 10.1080/09588221.2017.1329215
    Hong, J. C., Tai, K. H., & Ye, J. H. (2019). Playing a Chinese remote‐associated game: The correlation among flow, self‐efficacy, collective self‐esteem and competitive anxiety. British Journal of Educational Technology, 50(5), 2720-2735. doi: 10.1111/bjet.12721
    Hong, S. J., & Tam, K. Y. (2006). Understanding the adoption of multipurpose information appliances: The case of mobile data services. Information Systems Research, 17(2), 162-179.
    Hoy, A. W., & Spero, R. B. (2005). Changes in teacher efficacy during the early years of teaching: A comparison of four measures. Teaching and Teacher Education, 21(4), 343-356. doi: 10.1016/j.tate.2005.01.007
    Hoyle, R. H. (2000). Confirmatory factor analysis. In H. E. A. Tinsley & S. D. Brown (Eds.), Handbook of Applied Multivariate Statistics and Mathematical Modeling (pp. 465-497). New York, NY: Academic Press.
    Hsu, C. L., & Lu, H. P. (2004) Why do people play on-line games? An extended T AM with social influences and flow experience. Information and Management, 41(7), 853-868.
    Huang, H. M., & Liaw, S. S. (2018). An analysis of learners’ intentions toward virtual reality learning based on constructivist and technology acceptance approaches. The International Review of Research in Open and Distributed Learning, 19(1). doi: 10.19173/irrodl.v19i1.2503
    Huizenga, J. C., ten Dam, G. T. M., Voogt, J. M., & Admiraal, W. F. (2017). Teacher perceptions of the value of game-based learning in secondary education. Computers & Education, 110, 105-115.
    Johnson, R. A., & Hignite, M. A. (2000). Applying the technology acceptance model to the WWW. Academy of Information and Management Science Journal, 3(2), 130-142.
    Joo, Y. J., Bong, M., & Choi, H. J. (2000). Self-efficacy for self-regulated learning, academic self-efficacy, and internet self-efficacy in Web-based instruction. Educational Technology, Research and Development, 48(2), 5-17.
    Karpov, Y. (2005). The neo-Vygotskian approach to child development. Cambridge, UK: Cambridge University Press.
    Khalifa, A., Kato, T., & Yamamoto, S. (2016). Joining-in-type humanoid robot assisted language learning system. Proceedings of the Tenth International Conference on Language Resources and Evaluation, 245-249.
    Khalifa, A., Kato, T., & Yamamoto, S. (2017). Measuring effect of repetitive queries and implicit learning with joining-in-type robot assisted language learning system. Proceedings of the 7th ISCA Workshop on Speech and Language Technology in Education, 13-17. doi: 10.21437/SLaTE.2017-3.
    Khayati, M., & Hadi, M. S. (2021). Explicit vocabulary instruction with English language learners: A Charade game. English Language in Focus (ELIF), 3(1), 39-48.
    Kirschner, P. A., Sweller, J., & Clark, R. E. (2006). Why minimal guidance during instruction does not work: an analysis of the failure of constructivist, discovery, problem-based, experiential, and inquiry-based teaching. Educational Psychologist, 41(2), 75-86.
    Koivisto, J. M., Multisilta, J., Niemi, H., Katajisto, J., & Eriksson, E. (2016). Learning by playing: A cross-sectional descriptive study of nursing students' experiences of learning clinical reasoning. Nurse Education Today, 45, 22-28.
    Kurbanoglu, N. I., & Akim, A. (2010). The relationships between university students’ chemistry laboratory anxiety, attitudes, and self-efficacy beliefs. Australian Journal of Teacher Education, 35(8), 48-59. doi: 10.14221/ajte.2010v35n8.4
    Kuo, Y. C., Tseng, H., & Kuo, Y. T. (2020). Internet self-efficacy, self-regulation, and studenperformance: african-american adult students in online learning. International Journal on E-Learning: Corporate, Government, Healthcare, and Higher Education, 19(2), 161-180.
    Lai, C. (2013). A framework for developing self-directed technology use for language learning. Language Learning & Technology, 17, 100-122. doi: 10.1017/S0047404513000390
    Lane, J., & Lane, A. (2001). Self-efficacy and academic performance. Social Behavior and Personality: An International Journal, 29(7), 687-693. doi: 10.2224/sbp.2001.29.7.687
    Lassiter, D., & Goodma, N. D. (2015). How many kinds of reasoning? Inference, probability, and natural language semantics. Cognition, 136, 123-134. doi: 10.1016/j.cognition.2014.10.016
    Liaw, S. S., (2002). Understanding user perception of world-wide web environments. Journal of Computer Assisted Learning, 18, 137-148.
    Liaw, S. S., Huang, H. M., & Chen, G. D. (2007). Surveying instructor and learner attitudes toward e-learning. Computers & Education, 4, 1066-1080. doi: 10.1016/j.compedu.2006.01.001
    Liaw, S. S., & Huang, H. M. (2013). Perceived satisfaction, perceived usefulness and interactive learning environments as predictors to self-regulation in e-learning environments. Computers & Education, 60(1), 14-24. doi: 10.1016/j.compedu.2012.07.015
    Lillard, A. S., Lerner, M. D., Hopkins, E. J., Dore, R. A., Smith, E. D., & Palmquist, C. M. (2013). The impact of pretend play on children's development: A review of the evidence. Psychological Bulletin, 139(1), 1-34. doi: 10.1037/a0029321
    Loo, R. (2001). A caveat on using single-item versus multiple-item scales. Journal for Mangerial Psychology, 17(1), 68-75.
    Lu, L. S., Guan, S. S., Chang, W. S, & Huang, C. C. (2013). A study on the curriculum structure and industry needs for digital media design education in Taiwan. Procedia Social and Behavioral Sciences, 83, 895-899.
    MacKinnon, D. P. (2008). Introduction to statistical mediation analysis. New York, NY: Lawrence Erlbaum Associates.
    Malan, D. J., & Leitner, H. H. (2007). Scratch for budding computer scientists. ACM SIGCSE Bulletin, 39, 223-227.
    Maier, M., Ballester, B. R., & Verschure, P. F. (2019). Principles of neurorehabilitation after stroke based on motor learning and brain plasticity mechanisms. Frontiers in Systems Neuroscience, 13, 74.
    Manzini, E. (2009). New design knowledge. Design Studies, 30(1), 4-12.
    Martin, D. P., & Rimm-Kaufman, S. E. (2015). Do student self-efficacy and teacher-student interaction quality contribute to emotional and social engagement in fifth grade math? Journal of School Psychology, 53(5), 359-373. doi: 10.1016/j.jsp.2015.07.001
    McLoughlin, C., & Lee, M. J. W. (2010). Personalized and self-regulated learning in the web 2.0 era: international exemplars of innovative pedagogy using social software. Australasian Journal of Educational Technology, 26(1), 28-43. doi: 10.14742/ajet.1100
    McManus, I., & Furnham, A. (2010). Fun, fun, fun: Types of fun, attitudes to fun, and their relation to personality and biographical factors. Psychology, 1, 159.
    Mia, Q., & Liu, L. (2005). The role of internet self-efficacy in the acceptance of web-based electronic medical records. Journal of Organizational and End User Computing, 17(1), 38-57.
    Middleton, F. (2019). Reliability vs validity: What’s the difference? Retrieved from https://www.scribbr.com/methodology/reliability-vs-validity/
    Moon, W., & Kim, G. (2001). Extending the TAM for a world-wide-web context. Information & Management, 38(4), 217-282.
    Moore, G. C., & Benbasat, I. (1991). Development of an instrument to measure the perceptions of adopting an information technology innovation. Information Systems Research, 2 (3), 192-222.
    Movellan, J. R., Eckhardt, M., Virnes, M., & Rodriguez, A. (2009). Sociable robot improves toddler vocabulary skills. 2009 4th ACM/IEEE international conference on human-robot interaction (pp. 307-308). doi: 10.1145/1514095.1514189
    Nielsen, J., & Molich, R. (1990). Heuristic evaluation of user interfaces, CHI '90: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 249-256). doi: 10.1145/97243.97281
    Park, S. Y., Nam, M.W., & Cha, S. B. (2012). University students' behavioral intention to use mobile learning: Evaluating the technology acceptance model. British Journal of Educational Technology, 43(4), 592-605.
    Pellas, N., Fotaris, P., Kazanidis, I., & Wells, D. (2019). Augmenting the learning experience in primary and secondary school education: A systematic review of recent trends in augmented reality game-based learning. Virtual Reality, 23(4), 329-346.
    Pienimäki, M., Kinnula, M., & Iivari, N. (2021). Finding fun in non-formal technology education. International Journal of Child-Computer Interaction, 29, 100283. doi: 10.1016/j.ijcci.2021.100283
    Pintrich, P. R. (2003). A motivational science perspective on the role of student motivation in learning and teaching contexts. Journal of Educational Psychology, 95(4), 667-686.
    Preece, J., Sharp, H., & Rogers, Y. (2015). Interaction design: Beyond human-computer interaction (4th ed., Vol. 5, pp. 584). New York, NY: John Wiley & Sons.
    Rahmah, A., & Atsutik, Y. (2020). Charades game: does it affect students’ learning on English vocabulary? EnJourMe (English Journal of Merdeka): Culture, Language, and Teaching of English, 5(1), 75-83. doi: 10.26905/enjourme.v5i1.4258
    Ramsin, A., & Mayall, H. J. (2019). Assessing ESL learners' online learning self-efficacy in Thailand: Are they ready? Journal of Information Technology Education, 18, 467-479.
    Reeves, B., & Nass, C. (1996). The media equation: how people treat computers, television, and new media like real people and places. Stanford, CA: CSLI Publications.
    Richards, C. (2011). In the thick of it: Interpreting children's play. Ethnography and Education, 6(3), 309-324. doi: 10.1080/17457823.2011.610582
    Rigdon, E. E. (1998). Structural equation modeling. In G. A. Marcoulides (Ed.), Modern methods for business research (pp. 251-294). Mahwah, NJ: Lawrence Erlbaum Associates.
    Riggs, M. L., & Knight, P. A. (1994). The impact of perceived group success-failure on motivational beliefs and attitudes: A causal model. Journal of Applied Psychology, 79(5), 755-766. doi: 10. 1037/0021-9010.79.5.755
    Rosario, S., Antonio, C., Carmelo, C., Marcello, G., Shuichi, N., & Hiroshi, I. (2014). Telenoid android robot as an embodied perceptual social regulation medium engaging natural human-humanoid interaction. Robotics and Autonomous Systems, 62(9), 1329-1341. doi: 10.1016/j.robot.2014.03.017
    Rosenthal, S., & Ratan, R. A. (2022). Balancing learning and enjoyment in serious games: Kerbal Space Program and the communication mediation model. Computers & Education, 182, 104480. doi: 10.1016/j.compedu.2022.104480
    Sadi, O., & Uyar, M. (2013). The relationship between self-efficacy, self-regulated learning strategies and achievement: A path model. Journal of Baltic Science Education, 12(1), 21-33.
    Sari, D., & Chairani, N. (2017). The effectiveness of charades game toward students’ vocabulary mastery at fourth grade of SD Unggulan Aisyiyah Bantul in the academic year of 2016/2017. Proceedings of the 4th UAD TEFL International Conference, 126-136. doi: 10.12928/utic.v1.160.2017
    Scherer, R., Siddiq, F., & Tondeur, J. (2019). The technology acceptance model (TAM): A meta-analytic structural equation modeling approach to explaining teachers' adoption of digital technology in education. Computers & Education, 128, 13-35. doi: 10.1016/j.compedu.2018.09.009
    Schmidt, A. (2005). Interactive context-aware systems interacting with ambient intelligence. In G. Riva, F. Vatalaro, F. Davide, & M. Alcañiz (Eds.), Ambient Intelligence (pp. 159-178). Amsterdam, Netherlands: IOS Press.
    Schodde, T., Hoffmann, L., Stange, S., & Kopp, S. (2019). Adapt, explain, engage—A study on how social robots can scaffold second-language learning of children. ACM Transactions on Human-Robot Interaction, 9(1), 1-27. doi: 10.1145/3366422
    Schunk, D. H. (1996). Learning theories: An educational perspective. (2nd ed.) Englewood Cliffs, NJ: Pretice Hall.
    Schunk, D., & Ertmer, P. A. (2000). Self-eegulation and academic learning: Self-efficacy enhancing interventions. In M. Boekaerts, P. R. Pintrich, & M. Zeidner (Eds.), Handbook of Self-Regulation (pp. 631-649). San Diego, CA: Academic Press.
    Sevy-Biloon, J. (2017). Different reasons to play games in an English language class. Journal of Education and Training Studies, 5(1), 84-93. doi: 10.11114/jets.v5i1.1967
    Sharma, K., Papavlasopoulou, S., & Giannakos, M. (2019). Joint emotional state of children and perceived collaborative experience in coding activities. Proceedings of the 18th ACM International Conference on Interaction Design and Children, pp. 133-145. doi: 10.1145/3311927.3323145
    Shneiderman, B. (2004). Designing for fun: how can we design user interfaces to be more fun? Interactions, 11, 48-50.
    Skadberg, Y. X., & Kimmel, J. R. (2004). Visitors' flow experience while browsing a web site: Its measurement, contributing factors and consequences. Computers in Human Behavior, 20 (3), 403-422.
    Squire, K. (2006). From content to context: Videogames as designed experience. Educational Research, 35(8), 19-29.
    Stephens, R. G., Dunn, J. C., Hayes, B. K., & Kalish, M. L. (2020). A test of two processes: The effect of training on deductive and inductive reasoning. Cognition, 199, 104-223.
    Stevenson, C. E., Heiser, W. J., & Resing, W. C. M. (2013). Working memory as a moderator of training and transfer of analogical reasoning in children. Contemporary Educational Psychology, 38, 159-169.
    Stewart, O. G., & Jordan, M. E. (2017). Some explanation here: a case study of learning opportunities and tensions in an informal science learning environment. Instructional Science, 45, 137-156.
    Thong, J. Y., Hong, S. J., & Tam, K. Y. (2006). The effects of post-adoption beliefs on the expectation-confirmation model for information technology continuance. International Journal of Human-Computer Studies, 64(9), 799-810.
    Tubaishat, A. (2018). Perceived usefulness and perceived ease of use of electronic health records among nurses: application of technology acceptance model. Informatics for Health and Social Care, 43(4), 379-389.
    Turney, S. (2022). Pearson Correlation Coefficient (r): guide & examples. Retrieved from https://www.scribbr.com/statistics/pearson-correlation-coefficient/
    Turney, S. (2022). Coefficient of determination: Calculation & interpretation. Retrieved from https://www.scribbr.com/statistics/coefficient-of-determination/
    van den Berghe, R., de Haas, M., Oudgenoeg-Paz, O., Krahmer, E., Verhagen, J., Vogt, P., Willemsen, B., de Wit, J., & Leseman, P. (2021). A toy or a friend? Children's anthropomorphic beliefs about robots and how these relate to second-language word learning. Journal of Computer Assisted Learning, 37(2), 396-410. doi: 10.1111/jcal.12497
    van den Berghe, R., Verhagen, J., Oudgenoeg-Paz, O., Van der Ven, S., & Leseman, P. (2019). Social robots for language learning: A review. Review of Educational Research, 89(2), 259-295. doi: 10.3102/0034654318821286
    Vygotsky, L. S. (1978). Mind in society: The development of higher psychological processes. Cambridge, MA: Harvard University Press.
    Wei, C. W., Hung, I. C., Lee, L., & Chen, N. S. (2011). A Joyful classroom learning system with robot learning companion for children to learn mathematics multiplication. The Turkish Online Journal of Educational Technology, 10(2), 11-23.
    Wertheim, J., & Ragni, M. (2018). The neural correlates of relational reasoning: A meta-analysis of 47 functional magnetic resonance studies. Journal of Cognitive Neuroscience, 30(11), 1734-1748.
    Wu, J., Li, P., & Rao, S. (2008). Why they enjoy virtual game worlds? An empirical investigation. Journal of Electronic Commerce Research, 9(3), 219-230.
    Wu, Y., & Tsai, C. (2006). University students’ internet attitudes and internet self-efficacy: A study at three universities in Taiwan. Cyberpsychology and Behavior, 9(4), 441-450.

    下載圖示
    QR CODE