研究生: |
吳羅賢 Wu, Lou-Xian |
---|---|
論文名稱: |
開發以LabVIEW 程式控制的攜帶型氣體感測裝置之研究 Development of Portable Gas Sensing Devices Based on LabVIEW Program |
指導教授: |
林震煌
Lin, Cheng-Huang |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 95 |
中文關鍵詞: | LabVIEW 、攜帶型氣體感測裝置 |
英文關鍵詞: | LabVIEW, Portable gas sensing devices |
DOI URL: | http://doi.org/10.6345/NTNU201900122 |
論文種類: | 學術論文 |
相關次數: | 點閱:176 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究成功的開發以LabVIEW程式控制的攜帶型氣體感測裝置,並且利用自行所開發的氣體感測裝置進行應用探討。首先是二氧化碳/氧氣感測裝置:在植物光合作用與呼吸作用的探討中,藉由控制光源開關來控制植物的光合作用,由實驗數據可以觀察到隨著光源的開關,二氧化碳的濃度也會隨著呼吸作用上升、光合作用下降,後續可以使用不同溫度條件或更換不同色光的光源,來探討葉子呼吸作用及光合作用的速率差異。在人體呼氣差異的探討中,由實驗結果可以發現在經過40秒的憋氣後,氧氣的消耗量與二氧化碳的生成量皆有明顯增加,後續可以將此裝置應用於其他呼吸作用相關的研究上,此外,為了促進國際學術交流,研究室送出三組二氧化碳/氧氣感測裝置與德拉薩大學進行精緻農業相關的跨國合作研究。
接著是揮發性有機氣體感測裝置的應用,利用此氣體感測裝置來進行酒測的可行性探討,使用編寫的LabVIEW程式進行進樣控制,此裝置的酒測濃度範圍在24 ~ 360 μg/L之間,其酒測範圍可以因應現行酒測標準,說明自組裝揮發性有機氣體感測裝置具有與酒測儀相似的效能。
最後是氣相層析/微哨感測裝置的應用,在人體呼氣中二氧化碳濃度與血糖值之相關性探討中,從兩位受試者的測試結果可發現呼氣中二氧化碳濃度與血糖值具有相關性,此結果對於開發非侵入式血糖檢測方法是具有一定潛力。在產氫過程的化學動力學探討中,氣相層析/微哨感測裝置可以進行即時偵測並得知產氫速率,後續可以改變pH值來探討產氫速率差異,並從中找出最佳化的研究參數。
In this study, LabVIEW program was used to control gas sensing devices and operated those devices for gas monitoring. In the first case, CO2/O2 sensing devices were used to monitor the process of plant photosynthesis and respiration. There had a light source switch to control plant photosynthesis. The concentration of CO2 would increase when leaves breathed and the concentration would decrease when leaves were undergoing photosynthesis. For more discussion, different temperature conditions or different color light sources were used to explore the difference of leaf respiration and photosynthesis. CO2/O2 sensing devices were used to measure human exhaled breath after breath-holding 40s. The experimental results showed that human body consumed more O2 and produced more CO2 after breath-holding 40s. And this CO2/O2 sensing devices had potential for continuous monitoring of human exhaled breath. In addition, there had three sets of CO2/O2 sensing devices to conduct cross-country research with De La Salle University for quality agriculture.
The second issue was the application of a VOCs gas sensing device. The gas sensing device was used to alcohol measurement. The programmed LabVIEW software was used to control this gas sensing device. The linear ranges of alcohol calibration line were from 24 to 360 μg/L. It was used for the current alcohol testing and had similar performance as commercial breathalyzer.
Finally, gas chromatography/milli-whistle sensing device was used to investigate the relationship between CO2 concentration in human exhaled breath and blood glucose. The experimental results showed that CO2 concentration in human exhaled breath and blood glucose had the same trend from the test results of two subjects. So, this result had potential for developing non-invasive blood glucose testing methods. In the chemical kinetics of the hydrogen production process, the gas chromatography/milli-whistle sensing device could perform real-time detection and know the hydrogen production rate. Furthermore, the best parameters for hydrogen production would be found by different pH conditions.
1. Baraboi, B.; Creţu, M.; Foşalău, C.; Donciu, C., Gas analysis system based on artificial neural networks. In 11th IMEKO TC4 Symposium on Trends in Electrical Measurements and Instrumentation, Lisbon; Portugal, 2001; pp 379-382.
2. Moelders, N.; McNeal, M. P.; Pralle, M. U.; Last, L. a.; Ho, W.; Greenwald, A. C.; Daly, J. T.; Johnson, E. A.; George, T.; Choi, D. S., Development of optical MEMS carbon dioxide sensors. Proceedings of SPIE-The International Society for Optical Engineering 2001, 4561, 305-314.
3. Grassi, M.; Malcovati, P.; Francioso, L.; Siciliano, P.; Baschirotto, A., Integrated interface circuit with multiplexed input and digital output for a 5×5 SnO2 thick film gas-sensor matrix. Sensors and Actuators B: Chemical 2008, 132 (2), 568-575.
4. Kai, S.; Qi, W.; Zhang, H.; Yingguo, C., Design and implementation a real-time electronic nose system. In 2009 IEEE Intrumentation and Measurement Technology Conference, 2009; pp 589-592.
5. Vashpanov, Y.; Choo, H.; Kim, D. S., Dynamic control of adsorption sensitivity for photo-EMF-based ammonia gas sensors using a wireless network. Sensors (Basel) 2011, 11 (11), 10930-9.
6. Fan, K. G.; Zhang, X.; Cao, Q. M.; Sheng, Y. F.; Zheng, L. P., Design and Research on the Gas Monitoring System Based on LabVIEW. Applied Mechanics and Materials 2013, 427-429, 1254-1257.
7. Guo, C. F.; Wei, A. Y.; Cheng, X. Z., Design of Multi-Parameter Environmental Monitoring Instrument Based on Labview. Applied Mechanics and Materials 2013, 433-435, 519-526.
8. Ting, W.; Wenjie, Z.; Yang, Y.; Yunbo, S., The On-Line Detection System of Gas Mixture Based on LabVIEW and MEMS Sensor Arrays. In 2014 Fourth International Conference on Instrumentation and Measurement, Computer, Communication and Control, 2014; pp 716-720.
9. Muhammad Aksar, K. P.; Thaha, A. J.; Xavier, A., Wireless sensor network based Bank Monitoring System using LabVIEW™. In 2015 International Conference on Electrical, Electronics, Signals, Communication and Optimization (EESCO), IEEE: Visakhapatnam, India, 2015; pp 1-5.
10. Sapsanis, C.; Omran, H.; Chernikova, V.; Shekhah, O.; Belmabkhout, Y.; Buttner, U.; Eddaoudi, M.; Salama, K. N., Insights on Capacitive Interdigitated Electrodes Coated with MOF Thin Films: Humidity and VOCs Sensing as a Case Study. Sensors (Basel) 2015, 15 (8), 18153-66.
11. Gupta, T.; Sanket, R.; Singh, R.; Gehlot, A.; Mehandiratta, E.; Agarwal, A.; Choudhury, S., Design and Development of Low-Cost Wireless Parameter Monitoring System for Nuclear Power Plant. In 1st International Conference on Intelligent Communication, Control and Devices, ICICCD, Dehradun; India, 2016; pp 569-580.
12. Li, B.; Wang, J.; Chi, Y.-D.; Yang, X.; Wang, Y., Wireless measurement and control system of carbon dioxide using infrared sensor in greenhouse environment. INMATEH - Agricultural Engineering 2018, 54 (1), 47-54.
13. Muda, R.; Arsad, N.; Ariffin, N.; Hadi, A. A., A Compact Optical Fiber Based Gas Sensing System for Carbon Dioxide Monitoring. Journal of Telecommunication, Electronic and Computer Engineering 2018, 10 (1-3), 11-14.
14. Singh, R., An intelligent system for odour discrimination. In Proceedings First IEEE International Workshop on Electronic Design, Test and Applications '2002, IEEE: 2002; pp 489-491.
15. Eren, H.; Al-Ghamdi, A.; Jinhua, L., Application of zigbee for pollution monitoring caused by automobile exhaust gases. In 2009 IEEE Sensors Applications Symposium, 2009; pp 164-168.
16. Che Harun, F. K.; Ibrahim, N. A.; Mohd Basri, M. A., Development Of Portable Electronic Nose Device For Perfume Odour Classification. Jurnal Teknologi 2011, 54 (1), 23-30.
17. Tomić, J.; Živanov, M. B.; Kušljević, M.; Obradović, Đ.; Szatmari, J., Realization of Measurement Station for Remote Environmental Monitoring. Key Engineering Materials 2013, 543, 105-108.
18. Otálor, S.; Achury Bohorquez, C. A.; Gómez Gutiérrez, M. J., DESIGN AND EVALUATION OF A PORTABLE METER OIL POLLUTION PROTOTYPE WASTEWATER WITH TEMPERATURE CONTROL USING ARDUINO TECHNOLOGY. ARPN Journal of Engineering and Applied Sciences 2015, 10 (14), 6065-6071.
19. Khera, N.; Sharma, P.; Shukla, D.; Dar, I. G., Development of web based gas monitoring system using LabVIEW. In 2017 Recent Developments in Control, Automation & Power Engineering (RDCAPE), IEEE: Noida, India, 2017; pp 439-441.
20. Dorcea, D.; Hnatiuc, M.; Lazar, I., Acquisition and Calibration Interface for Gas Sensors. In 2018 IEEE 24th International Symposium for Design and Technology in Electronic Packaging (SIITME), IEEE: Iasi, Romania, 2018; pp 120-123.
21. Ionel, R.; Gontean, A.; Draut-Gherban, P., Implementation of a CO concentration monitoring system using virtual instrumentation. In Proceedings of the 6th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems, 2011; pp 152-155.
22. Yang, S. F.; Liu, Y. J., Research of the Harmful Gas Detection and Control System in Dairy. Applied Mechanics and Materials 2013, 347-350, 600-603.
23. Moreno Guzman, O. M.; Aguirre, S. M.; Mixcoatl, J. C.; Beltran Perez, G., Mobile localization system for ethanol leaks with wireless communication. In 2014 IEEE 9th IberoAmerican Congress on Sensors, 2014; pp 1-3.
24. Rani, N. N.; B, J.; N, V. P.; C, V.; A.Valith, GAS LEAKAGE MONITORING AND CONTROL USING LabVIEW. INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN ELECTRICAL, ELECTRONICS, INSTRUMENTATION AND CONTROL ENGINEERING 2014, 2 (8), 1866-1868.
25. Deshmukh, L. P.; Mujawar, T. H.; Kasbe, M. S.; Mule, S. S.; Akhtar, J.; Maldar, N. N., A LabVIEW based remote monitoring and controlling of wireless sensor node for LPG gas leakage detection. In 2016 International Symposium on Electronics and Smart Devices (ISESD), IEEE: Bandung, Indonesia, 2016; pp 115-120.
26. Lorwongtragool, P.; Wongchoosuk, C.; Kerdcharoen, T., Portable electronic nose for beverage quality assessment. In The 8th Electrical Engineering/ Electronics, Computer, Telecommunications and Information Technology (ECTI) Association of Thailand - Conference 2011, 2011; pp 163-166.
27. Konduru, T.; Rains, G. C.; Li, C., A customized metal oxide semiconductor-based gas sensor array for onion quality evaluation: system development and characterization. Sensors (Basel) 2015, 15 (1), 1252-73.
28. Chen, X. P.; Wong, C. K. Y.; Yuan, C. A.; Zhang, G. Q., Evaluation and selection of sensing materials for carbon dioxide (CO2) sensor by molecular modeling. Procedia Engineering 2011, 25, 379-382.
29. Wang, J.; Zheng, L.; Niu, X.; Zheng, C.; Wang, Y.; Tittel, F. K., Mid-infrared absorption-spectroscopy-based carbon dioxide sensor network in greenhouse agriculture: development and deployment. Appl Opt 2016, 55 (25), 7029-36.
30. Wang, J. N.; Xue, Q. S.; Lin, G. Y.; Ma, Q. J., Mid-infrared carbon dioxide sensor with wireless and anti-condensation capability for use in greenhouses. Spectroscopy Letters 2018, 51 (6), 266-273.
31. Neethirajan, S.; Jayas, D. S.; Sadistap, S., Carbon Dioxide (CO2) Sensors for the Agri-food Industry—A Review. Food and Bioprocess Technology 2008, 2 (2), 115-121.
32. Meng, X.; Kim, S.; Puligundla, P.; Ko, S., Carbon dioxide and oxygen gas sensors-possible application for monitoring quality, freshness, and safety of agricultural and food products with emphasis on importance of analytical signals and their transformation. Journal of the Korean Society for Applied Biological Chemistry 2014, 57 (6), 723-733.
33. Smolander, M.; Hurme, E.; Ahvenainen, R., Leak indicators for modified-atmosphere packages. Trends in Food Science & Technology 1997, 8 (4), 101-106.
34. Muir, W. E.; Waterer, D.; Sinha, R. N., Carbon Dioxide as an Early Indicator of Stored Cereal and Oilseed Spoilage. Transactions of the ASAE 1985, 28 (5), 1673-1675.
35. Pacioni, G.; Leonardi, M.; Di Carlo, P.; Ranalli, D.; Zinni, A.; De Laurentiis, G., Instrumental monitoring of the birth and development of truffles in a Tuber melanosporum orchard. Mycorrhiza 2014, 24 Suppl 1, S65-72.
36. Yu, T. C.; Lin, C. C.; Chen, C. C.; Lee, W. L.; Lee, R. G.; Tseng, C. H.; Liu, S. P., Wireless sensor networks for indoor air quality monitoring. Med Eng Phys 2013, 35 (2), 231-5.
37. Muhammad Hafiz, S.; Ritikos, R.; Whitcher, T. J.; Md. Razib, N.; Bien, D. C. S.; Chanlek, N.; Nakajima, H.; Saisopa, T.; Songsiriritthigul, P.; Huang, N. M.; Rahman, S. A., A practical carbon dioxide gas sensor using room-temperature hydrogen plasma reduced graphene oxide. Sensors and Actuators B: Chemical 2014, 193, 692-700.
38. Erdmann, C. A.; Apte, M. G., Mucous membrane and lower respiratory building related symptoms in relation to indoor carbon dioxide concentrations in the 100-building BASE dataset. Indoor Air 2004, 14 Suppl 8, 127-34.
39. Legal blood alcohol concentration limits. http://apps.who.int/gho/data/view.main.54600# (June 20, 2019).
40. Ejaimi, G.; Saeed, S., An Introduction to Airway Assessment and Management (Concise Airway Anatomy and Pathophysiology). Annals of International medical and Dental Research 2016, 3 (1), AN01-AN07.
41. Pauling, L.; Robinson, A. B.; Teranishi, R.; Cary, P., Quantitative analysis of urine vapor and breath by gas-liquid partition chromatography. Proc Natl Acad Sci U S A 1971, 68 (10), 2374-6.
42. Phillips, M., Method for the collection and assay of volatile organic compounds in breath. Anal Biochem 1997, 247 (2), 272-8.
43. Popov, T. A., Human exhaled breath analysis. Ann Allergy Asthma Immunol 2011, 106 (6), 451-6; quiz 457.
44. Deng, C.; Zhang, J.; Yu, X.; Zhang, W.; Zhang, X., Determination of acetone in human breath by gas chromatography-mass spectrometry and solid-phase microextraction with on-fiber derivatization. J Chromatogr B Analyt Technol Biomed Life Sci 2004, 810 (2), 269-75.
45. Galassetti, P. R.; Novak, B.; Nemet, D.; Rose-Gottron, C.; Cooper, D. M.; Meinardi, S.; Newcomb, R.; Zaldivar, F.; Blake, D. R., Breath Ethanol and Acetone as Indicators of Serum Glucose Levels: An Initial Report. Diabetes Technology & Therapeutics 2005, 7 (1), 115-123.
46. Wang, C.; Mbi, A.; Shepherd, M., A Study on Breath Acetone in Diabetic Patients Using a Cavity Ringdown Breath Analyzer: Exploring Correlations of Breath Acetone With Blood Glucose and Glycohemoglobin A1C. IEEE Sensors Journal 2010, 10 (1), 54-63.
47. Fan, G. T.; Yang, C. L.; Lin, C. H.; Chen, C. C.; Shih, C. H., Applications of Hadamard transform-gas chromatography/mass spectrometry to the detection of acetone in healthy human and diabetes mellitus patient breath. Talanta 2014, 120, 386-90.
48. Weykamp, C. W.; Penders, T. J.; Muskiet, F. A.; Slik, W. v. d., Effect of calibration on dispersion of glycohemoglobin values determined by 111 laboratories using 21 methods. CLIN.CHEM. 1994, 40 (1), 138-144.
49. TRINDER, P., Determination of Glucose in Blood using Glucose Oxidase with an alternative oxygen acceptor. Annals of Clinical Biochemistry 1969, 6 (1), 24-27.
50. Fowler, W. S., LUNG FUNCTION STUDIES. II. THE RESPIRATORY DEAD SPACE. American Journal of Physiology 1948, 154 (3).
51. Davis, C. E.; Frank, M.; Mizaikoff, B.; Oser, H., Editorial The Future of Sensors and Instrumentation for Human Breath Analysis. IEEE Sensors Journal 2010, 10 (1), 3-6.
52. Lawal, O.; Ahmed, W. M.; Nijsen, T. M. E.; Goodacre, R.; Fowler, S. J., Exhaled breath analysis: a review of 'breath-taking' methods for off-line analysis. Metabolomics 2017, 13 (10), 110.
53. Donald, M. J.; Paterson, B., End tidal carbon dioxide monitoring in prehospital and retrieval medicine: a review. Emerg Med J 2006, 23 (9), 728-30.
54. Soleimanpour, H.; Taghizadieh, A.; Niafar, M.; Rahmani, F.; Golzari, S. E.; Esfanjani, R. M., Predictive value of capnography for suspected diabetic ketoacidosis in the emergency department. West J Emerg Med 2013, 14 (6), 590-4.
55. Alawad, A. O.; Merghani, T. H.; Ballal, M. A., Resting metabolic rate in obese diabetic and obese non-diabetic subjects and its relation to glycaemic control. BMC Res Notes 2013, 6, 382.
56. Jagadeesan, K.; Suseela, V.; Panicker, T. M. R.; Suresh, V.; Angelina, J. T. T.; Jagadeesan, K., Assessment of Metabolic Status in Yoga and in Vigorous Physical Exercise. JIMSA 2015, 28 (1), 18-20.
57. Pal, R.; Singh, S. N.; Halder, K.; Tomer, O. S.; Mishra, A. B.; Saha, M., Effects of Yogic Practice on Metabolism and Antioxidant-Redox Status of Physically Active Males. J Phys Act Health 2015, 12 (4), 579-87.
58. Sun, T.; Liu, E.; Liang, X.; Hu, X.; Fan, J., Enhanced hydrogen evolution from water splitting using Fe-Ni codoped and Ag deposited anatase TiO2 synthesized by solvothermal method. Applied Surface Science 2015, 347, 696-705.
59. Xie, M.-Y.; Su, K.-Y.; Peng, X.-Y.; Wu, R.-J.; Chavali, M.; Chang, W.-C., Hydrogen production by photocatalytic water-splitting on Pt-doped TiO2–ZnO under visible light. Journal of the Taiwan Institute of Chemical Engineers 2017, 70, 161-167.
60. Higashi, T.; Nishiyama, H.; Suzuki, Y.; Sasaki, Y.; Hisatomi, T.; Katayama, M.; Minegishi, T.; Seki, K.; Yamada, T.; Domen, K., Transparent Ta3 N5 Photoanodes for Efficient Oxygen Evolution toward the Development of Tandem Cells. Angew Chem Int Ed Engl 2019, 58 (8), 2300-2304.
61. Kobayashi, Y.; Matsuda, S.; Imamura, K.; Kobayashi, H., Hydrogen generation by reaction of Si nanopowder with neutral water. J Nanopart Res 2017, 19 (5), 176.
62. Kobayashi, Y.; Imamura, K.; Matsumoto, T.; Kobayashi, H., Fabrication of Si nanopowder and application to hydrogen generation and photoluminescent material. Journal of Electrical Engineering 2017, 68 (7), 17-23.
63. Imamura, K.; Kobayashi, Y.; Matsuda, S.; Akai, T.; Kobayashi, H., Reaction of Si nanopowder with water investigated by FT-IR and XPS. AIP Advances 2017, 7 (8).
64. Maurizi, C. P., Alzheimer's disease: roles for mitochondrial damage, the hydroxyl radical, and cerebrospinal fluid deficiency of melatonin. Med Hypotheses 2001, 57 (2), 156-60.
65. Ihara, Y.; Chuda, M.; Kuroda, S.; Hayabara, T., Hydroxyl radical and superoxide dismutase in blood of patients with Parkinson’s disease: relationship to clinical data. Journal of the Neurological Sciences 1999, 170 (2), 90-95.
66. Charvin, D.; Vanhoutte, P.; Pages, C.; Borrelli, E.; Caboche, J., Unraveling a role for dopamine in Huntington's disease: the dual role of reactive oxygen species and D2 receptor stimulation. Proc Natl Acad Sci U S A 2005, 102 (34), 12218-23.
67. Coltman, J. W., Jet drive mechanisms in edge tones and organ pipes. The Journal of the Acoustical Society of America 1976, 60 (3), 725-733.
68. Hansen, U. J.; Hoekje, P., Air column resonance demonstrations. The Journal of the Acoustical Society of America 1998, 104 (3), 1792-1792.
69. Skoog, D. A.; Holler, F. J.; Crouch, S. R., Gas Chromatography In Principles of Instrumental Analysis 6ed.; Cengage Learning: 2007; p 802.
70. Nishiyama, M.; Kleijn, S.; Aquilanti, V.; Kasai, T., Mass spectrometric study of the kinetics of O2 consumption and CO2 production by breathing leaves. Chemical Physics Letters 2009, 470 (4-6), 332-336.
71. Nishiyama, M.; Kleijn, S.; Aquilanti, V.; Kasai, T., Temperature dependence of respiration rates of leaves, 18O-experiments and super-Arrhenius kinetics. Chemical Physics Letters 2009, 482 (4-6), 325-329.
72. Terashima, I.; Fujita, T.; Inoue, T.; Chow, W. S.; Oguchi, R., Green light drives leaf photosynthesis more efficiently than red light in strong white light: revisiting the enigmatic question of why leaves are green. Plant Cell Physiol 2009, 50 (4), 684-97