研究生: |
林庭州 Lin, Ting-Zhou |
---|---|
論文名稱: |
瑪莉亞颱風(2018)快速增強及結構演變之數值模擬研究 The numerical simulation and study of rapid intensification (RI) and structure evolution of Typhoon Maria(2018) |
指導教授: |
簡芳菁
Chien, Fang-Ching |
口試委員: | 王重傑 周昆炫 簡芳菁 |
口試日期: | 2022/01/26 |
學位類別: |
碩士 Master |
系所名稱: |
地球科學系 Department of Earth Sciences |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 中文 |
論文頁數: | 82 |
中文關鍵詞: | 快速增強 、數值模擬 、颱風 、暖心結構 、海溫敏感度 、海表通量 |
英文關鍵詞: | typhoon, rapid intensification, numerical simulation, warm core, sea surface temperature sensitivity, sea surface flux |
研究方法: | 實驗設計法 、 個案研究法 |
DOI URL: | http://doi.org/10.6345/NTNU202200303 |
論文種類: | 學術論文 |
相關次數: | 點閱:171 下載:43 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
瑪莉亞颱風(Maria)於 2018 年 7 月 3 日於關島東南方海面生成,從 5 日至 6 日,其強度迅速增強進入快速增強(Rapid Intensification; RI)過程,並於 RI 結束後不到 24 小時便進行了一次眼牆置換。本研究利用 WRF 模式搭配歐洲中期天氣預報中心 (European Centre for Medium-Range Weather Forecast;ECMWF)之 ERA5 全球模式資料為初始場,同時利用颱風動力初始化方式,分析瑪莉亞颱風 RI 過程以及結構變化。
模擬結果顯示, RI 的發展主要受到內外兩對流區強度的影響。在 RI 開始前,內核區高層的對流活動,以及較低的環境垂直風切,使得潛熱能夠有效釋放,形成高層暖心結構,進而使颱風中心最低氣壓下降,高層暖心與中心最低氣壓之間的正回饋,有效提高颱風的強度,使颱風進入 RI階段。在 RI 後期,即便颱風對流強度沒有顯著的減弱,但是由於強對流活動主要集中在外圍,能量無法有效傳遞至內核區,導致內核區對流減弱,使得高層暖心結構無法維持,颱風強度停止增強。
為瞭解海表溫度以及海表通量傳輸對於 RI 的影響,本研究進行改變海溫以及改變海表通量計算方式之敏感度實驗。結果顯示,當海溫降低2°C 以上時,不會發展 RI 。當海溫降低1°C 時,依舊會發展 RI ,但是受限於海表熱通量不足及垂直結構傾斜等影響,高層暖心結構以及 RI 持續時間較短。當海溫增加1°C 時,颱風強度不論是在 RI 前、中、後都有更為顯著的增強,高層暖心結構更能夠維持,且垂直結構較不為傾斜。而改變海表通量計算方式,使得海表面阻力減小以及海表向上傳輸的熱通量增加,對於 RI 後期的增強更為顯著,且高層暖心結構更為明顯。
Black, M. L., J. F. Gamache, F. D. Marks Jr., C. E. Samsury, and H. E. Willoughby, 2002: Eastern Pacific Hurricanes Jimena of 1991 and Olivia of 1994: The effect of vertical shear on structure and intensity. Mon. Wea. Rev., 130, 2291-2312.
Chang, C.-C. and C.-C. Wu, 2017: On the Processes Leading to the Rapid Inten- sification of Typhoon Megi (2010). J. Atmos. Sci., 74, 1169–1200.
Chen, H., and D.-L. Zhang, 2013: On the rapid intensification of Hurricane Wilma (2005). Part II: Convective bursts and the upper-level warm core. J. Atmos. Sci., 70, 146–162.
Chen, X., M. Xue, and J. Fang, 2018: Rapid intensification of Typhoon Mujigae (2015) under different sea surface temperatures: Structural changes lead ing to rapid intensification. J. Atmos. Sci., 75, 4313–4335.
Chen, X., Y. Wang, J. Fang, and M. Xue, 2018: A numerical study on rapid intensification of Typhoon Vicente (2012) in the South China Sea. Part II: Roles of inner-core processes. J. Atmos. Sci., 75, 235–255.
Cheng, C.-J., and C.-C. Wu, 2020: The role of WISHE in the rapid intensification of tropical cyclones. J. Atmos. Sci., 77, 3139-3160.
DeMaria, M., C. R. Sampson, J. A. Knaff, and K. D. Musgrave, 2014: Is tropical cyclone intensity guidance improving? Bull. Amer. Meteor. Soc., 95, 387–398.
Eastin, M. D., W. M. Gray and P. G. Black, 2005: Buoyancy of convective vertical motions in the inner core of intense hurricanes. Part II: Case studies. Mon. Wea. Rev., 133, 208-227.
Emanuel, K. A., 1986: An air–sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43, 585–605.
───, 1989: The Finite-Amplitude Nature of Tropical Cyclogenesis. J. Atmos.
Sci., 46, 3431-3456.
Green, B. W. and F. Zhang, 2013: Impacts of Air–Sea Flux Parameterizations on the Intensity and Structure of Tropical Cyclones. Mon. Wea. Rev., 141, 2308–2324.
Hendricks, E.A., M.S. Peng, B. Fu, and T. Li, 2010: Quantifying Environmental Control on Tropical Cyclone Intensity Change. Mon. Wea. Rev., 138, 3243–3271.
Holliday, C. R. and A. H. Thompson, 1979: Climatological Characteristics of Rapidly Intensifying Typhoons. Mon. Wea. Rev., 107, 1022–1034.
Hong, S.-Y., Noh, Y., and Dudhia, J. 2006: A New Vertical Diffusion Package with an Explicit Treatment of Entrainment Processes, Mon. Weather Rev., 134, 2318–2341.
Kain, J. S. and J. M. Fritsch, 1990: A One-Dimensional Entraining/Detraining PlumeModel and its Application in Convective Parameterization. J. Atmos. Sci., 47, 2784–2802.
Kaplan, J., and M. DeMaria, 2003: Large-scale characteristics of rapidly intensifying tropical cyclones in the North Atlantic basin. Wea. Forecasting, 18, 1093–1108.
Kurihara, Y., M. A. Bender, and R. J. Ross, 1993: An initialization scheme of hurricane models by vortex specification. Mon. Wea. Rev., 121, 2030–2045.
Lin, I.-I., C.-C. Wu, I. F. Pun, and D. S. Ko, 2008: Upper-ocean thermal structure and the western North Pacific category 5 typhoons. Part I: Ocean features and the category 5 typhoons' intensification. Mon. Wea. Rev., 136, 3288–3306.
Nguyen, H. V., and Y.-L. Chen, 2011: High-Resolution Initialization and Simulations of Typhoon Morakot (2009). Mon. Wea. Rev., 139, 1463-1491.
───, 2014: On the Spin-up Process of a Typhoon Vortex in a Tropical Cyclone Initialization Scheme and Its Impacts on the Intensity Simulations. Mon. Wea. Rev., 142, 4340–4356
Ooyama, K., 1969: Numerical simulation of the life cycle of tropical cyclones. J. Atmos. Sci., 26, 3–40.
Peng, C.-H., and C.-C. Wu, 2020: The Impact of outer-core surface heat fluxes on the convective activities and rapid intensification of tropical cyclones. J. Atmos. Sci., 77, 3907-3927.
Rotunno, R., and K. Emanuel, 1987: An Air–Sea Interaction Theory for Tropical Cyclones. Part II: Evolutionary Study Using a Non hydrostatic Asymmetric Numerical Model. J. Atmos. Sci., 44, 542–561.
Schubert, W. H., and J. J. Hack, 1982: Inertial stability and tropical cyclone development. J. Atmos. Sci., 39, 1687–1697.
Stern, D. P., and F. Zhang, 2013: How does the eye warm? Part I: A potential temperature budget analysis of an idealized tropical cyclone. J. Atmos. Sci., 70, 73–90.
Tao, W. K., Simpson J. and McCumber M. 1989: An ice-water saturation adjustment. Mon. Wea. Rev., 117(1), 231-235.
Vigh, J.L. and W.H. Schubert, 2009: Rapid Development of the Tropical Cyclone Warm Core. J. Atmos. Sci., 66, 3335–3350.
Willoughby, H. E., J. A. Clos, and M. G. Shoreibah, 1982: Concentric-eyewalls, secondary wind maxima, and the evolution of the hurricane vortex. J. Appl. Sci.,39,395–411.
Wang, H., and Y. Wang, 2014: A numerical study of Typhoon Megi (2010). Part 1: Rapid intensification. Mon. Wea. Rev., 142, 29–48.
Wang H, Wang Y, Xu J, Duan Y 2019: Evolution of the warm-core structure during the eyewall replacement cycle in a numerically simulated Tropical Cyclone. J Atmos Sci., 76(8), 2559–2573.
Wang, Y., 2008: How do outer spiral rainbands affect tropical cyclone structure and intensity? J. Atmos. Sci., 66, 1250–1273.
Wang, Z., 2013: Characteristics of convective processes and vertical vorticity
from the tropical wave to the tropical cyclone stage in the high-resolution numerical model simulations of Tropical Cyclone Fay (2008). J. Atmos. Sci., 71, 896–915.
Zhang, D.-L., and H. Chen, 2012: Importance of the upper-level warm core in the rapid intensification of a tropical cyclone. Geophys. Res. Lett., 39, L02806.
Zhang, F., D. Tao, Y. Q. Sun, and J. D. Kepert, 2017: Dynamics and predict ability of secondary eyewall formation in sheared tropical cyclones. J. Adv. Model. Earth Syst., 9, 89–112.
Zhang, F. and K. Emanuel, 2016: On the Role of Surface Fluxes and WISHE in Tropical Cyclone Intensification. J. Atmos. Sci., 73, 2011–2019.
Zhu, Z., and P. Zhu, 2014: The role of outer rainband convection in governing the eyewall replacement cycle in numerical simulations of tropical cyclones. J. Geophys. Res., 119, 8049–8072.