簡易檢索 / 詳目顯示

研究生: 林庭州
Lin, Ting-Zhou
論文名稱: 瑪莉亞颱風(2018)快速增強及結構演變之數值模擬研究
The numerical simulation and study of rapid intensification (RI) and structure evolution of Typhoon Maria(2018)
指導教授: 簡芳菁
Chien, Fang-Ching
口試委員: 王重傑 周昆炫 簡芳菁
口試日期: 2022/01/26
學位類別: 碩士
Master
系所名稱: 地球科學系
Department of Earth Sciences
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 82
中文關鍵詞: 快速增強數值模擬颱風暖心結構海溫敏感度海表通量
英文關鍵詞: typhoon, rapid intensification, numerical simulation, warm core, sea surface temperature sensitivity, sea surface flux
研究方法: 實驗設計法個案研究法
DOI URL: http://doi.org/10.6345/NTNU202200303
論文種類: 學術論文
相關次數: 點閱:171下載:43
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 瑪莉亞颱風(Maria)於 2018 年 7 月 3 日於關島東南方海面生成,從 5 日至 6 日,其強度迅速增強進入快速增強(Rapid Intensification; RI)過程,並於 RI 結束後不到 24 小時便進行了一次眼牆置換。本研究利用 WRF 模式搭配歐洲中期天氣預報中心 (European Centre for Medium-Range Weather Forecast;ECMWF)之 ERA5 全球模式資料為初始場,同時利用颱風動力初始化方式,分析瑪莉亞颱風 RI 過程以及結構變化。
    模擬結果顯示, RI 的發展主要受到內外兩對流區強度的影響。在 RI 開始前,內核區高層的對流活動,以及較低的環境垂直風切,使得潛熱能夠有效釋放,形成高層暖心結構,進而使颱風中心最低氣壓下降,高層暖心與中心最低氣壓之間的正回饋,有效提高颱風的強度,使颱風進入 RI階段。在 RI 後期,即便颱風對流強度沒有顯著的減弱,但是由於強對流活動主要集中在外圍,能量無法有效傳遞至內核區,導致內核區對流減弱,使得高層暖心結構無法維持,颱風強度停止增強。
    為瞭解海表溫度以及海表通量傳輸對於 RI 的影響,本研究進行改變海溫以及改變海表通量計算方式之敏感度實驗。結果顯示,當海溫降低2°C 以上時,不會發展 RI 。當海溫降低1°C 時,依舊會發展 RI ,但是受限於海表熱通量不足及垂直結構傾斜等影響,高層暖心結構以及 RI 持續時間較短。當海溫增加1°C 時,颱風強度不論是在 RI 前、中、後都有更為顯著的增強,高層暖心結構更能夠維持,且垂直結構較不為傾斜。而改變海表通量計算方式,使得海表面阻力減小以及海表向上傳輸的熱通量增加,對於 RI 後期的增強更為顯著,且高層暖心結構更為明顯。

    第一章 前言 1 1.1 文獻回顧 1 1.2 研究動機 4 第二章 個案介紹和觀測資料分析 5 2.1 瑪莉亞颱風(Maria) 5 2.2 綜觀環境 5 2.3 小結 7 第三章 資料來源與研究方法 9 3.1 資料來源 9 3.2 WRF模式簡介 9 3.3 WRF模式設定 10 3.4 動力初始化 11 3.5 實驗設計 13 第四章 數值模擬結果 15 4.1 模擬結果校驗 15 4.2 颱風的演變與發展 16 4.3 對流爆發分析 22 4.4 熱力結構分析 24 4.5 小結 26 第五章 敏感度實驗 27 第六章 結論與未來展望 33 6.1 總結 33 6.2 未來展望 34 參考文獻 36 附圖 40

    Black, M. L., J. F. Gamache, F. D. Marks Jr., C. E. Samsury, and H. E. Willoughby, 2002: Eastern Pacific Hurricanes Jimena of 1991 and Olivia of 1994: The effect of vertical shear on structure and intensity. Mon. Wea. Rev., 130, 2291-2312.
    Chang, C.-C. and C.-C. Wu, 2017: On the Processes Leading to the Rapid Inten- sification of Typhoon Megi (2010). J. Atmos. Sci., 74, 1169–1200.
    Chen, H., and D.-L. Zhang, 2013: On the rapid intensification of Hurricane Wilma (2005). Part II: Convective bursts and the upper-level warm core. J. Atmos. Sci., 70, 146–162.
    Chen, X., M. Xue, and J. Fang, 2018: Rapid intensification of Typhoon Mujigae (2015) under different sea surface temperatures: Structural changes lead ing to rapid intensification. J. Atmos. Sci., 75, 4313–4335.
    Chen, X., Y. Wang, J. Fang, and M. Xue, 2018: A numerical study on rapid intensification of Typhoon Vicente (2012) in the South China Sea. Part II: Roles of inner-core processes. J. Atmos. Sci., 75, 235–255.
    Cheng, C.-J., and C.-C. Wu, 2020: The role of WISHE in the rapid intensification of tropical cyclones. J. Atmos. Sci., 77, 3139-3160.
    DeMaria, M., C. R. Sampson, J. A. Knaff, and K. D. Musgrave, 2014: Is tropical cyclone intensity guidance improving? Bull. Amer. Meteor. Soc., 95, 387–398.
    Eastin, M. D., W. M. Gray and P. G. Black, 2005: Buoyancy of convective vertical motions in the inner core of intense hurricanes. Part II: Case studies. Mon. Wea. Rev., 133, 208-227.
    Emanuel, K. A., 1986: An air–sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43, 585–605.
    ───, 1989: The Finite-Amplitude Nature of Tropical Cyclogenesis. J. Atmos.
    Sci., 46, 3431-3456.
    Green, B. W. and F. Zhang, 2013: Impacts of Air–Sea Flux Parameterizations on the Intensity and Structure of Tropical Cyclones. Mon. Wea. Rev., 141, 2308–2324.
    Hendricks, E.A., M.S. Peng, B. Fu, and T. Li, 2010: Quantifying Environmental Control on Tropical Cyclone Intensity Change. Mon. Wea. Rev., 138, 3243–3271.
    Holliday, C. R. and A. H. Thompson, 1979: Climatological Characteristics of Rapidly Intensifying Typhoons. Mon. Wea. Rev., 107, 1022–1034.
    Hong, S.-Y., Noh, Y., and Dudhia, J. 2006: A New Vertical Diffusion Package with an Explicit Treatment of Entrainment Processes, Mon. Weather Rev., 134, 2318–2341.
    Kain, J. S. and J. M. Fritsch, 1990: A One-Dimensional Entraining/Detraining PlumeModel and its Application in Convective Parameterization. J. Atmos. Sci., 47, 2784–2802.
    Kaplan, J., and M. DeMaria, 2003: Large-scale characteristics of rapidly intensifying tropical cyclones in the North Atlantic basin. Wea. Forecasting, 18, 1093–1108.
    Kurihara, Y., M. A. Bender, and R. J. Ross, 1993: An initialization scheme of hurricane models by vortex specification. Mon. Wea. Rev., 121, 2030–2045.
    Lin, I.-I., C.-C. Wu, I. F. Pun, and D. S. Ko, 2008: Upper-ocean thermal structure and the western North Pacific category 5 typhoons. Part I: Ocean features and the category 5 typhoons' intensification. Mon. Wea. Rev., 136, 3288–3306.
    Nguyen, H. V., and Y.-L. Chen, 2011: High-Resolution Initialization and Simulations of Typhoon Morakot (2009). Mon. Wea. Rev., 139, 1463-1491.
    ───, 2014: On the Spin-up Process of a Typhoon Vortex in a Tropical Cyclone Initialization Scheme and Its Impacts on the Intensity Simulations. Mon. Wea. Rev., 142, 4340–4356
    Ooyama, K., 1969: Numerical simulation of the life cycle of tropical cyclones. J. Atmos. Sci., 26, 3–40.
    Peng, C.-H., and C.-C. Wu, 2020: The Impact of outer-core surface heat fluxes on the convective activities and rapid intensification of tropical cyclones. J. Atmos. Sci., 77, 3907-3927.
    Rotunno, R., and K. Emanuel, 1987: An Air–Sea Interaction Theory for Tropical Cyclones. Part II: Evolutionary Study Using a Non hydrostatic Asymmetric Numerical Model. J. Atmos. Sci., 44, 542–561.
    Schubert, W. H., and J. J. Hack, 1982: Inertial stability and tropical cyclone development. J. Atmos. Sci., 39, 1687–1697.
    Stern, D. P., and F. Zhang, 2013: How does the eye warm? Part I: A potential temperature budget analysis of an idealized tropical cyclone. J. Atmos. Sci., 70, 73–90.
    Tao, W. K., Simpson J. and McCumber M. 1989: An ice-water saturation adjustment. Mon. Wea. Rev., 117(1), 231-235.
    Vigh, J.L. and W.H. Schubert, 2009: Rapid Development of the Tropical Cyclone Warm Core. J. Atmos. Sci., 66, 3335–3350.
    Willoughby, H. E., J. A. Clos, and M. G. Shoreibah, 1982: Concentric-eyewalls, secondary wind maxima, and the evolution of the hurricane vortex. J. Appl. Sci.,39,395–411.
    Wang, H., and Y. Wang, 2014: A numerical study of Typhoon Megi (2010). Part 1: Rapid intensification. Mon. Wea. Rev., 142, 29–48.
    Wang H, Wang Y, Xu J, Duan Y 2019: Evolution of the warm-core structure during the eyewall replacement cycle in a numerically simulated Tropical Cyclone. J Atmos Sci., 76(8), 2559–2573.
    Wang, Y., 2008: How do outer spiral rainbands affect tropical cyclone structure and intensity? J. Atmos. Sci., 66, 1250–1273.
    Wang, Z., 2013: Characteristics of convective processes and vertical vorticity
    from the tropical wave to the tropical cyclone stage in the high-resolution numerical model simulations of Tropical Cyclone Fay (2008). J. Atmos. Sci., 71, 896–915.
    Zhang, D.-L., and H. Chen, 2012: Importance of the upper-level warm core in the rapid intensification of a tropical cyclone. Geophys. Res. Lett., 39, L02806.
    Zhang, F., D. Tao, Y. Q. Sun, and J. D. Kepert, 2017: Dynamics and predict ability of secondary eyewall formation in sheared tropical cyclones. J. Adv. Model. Earth Syst., 9, 89–112.
    Zhang, F. and K. Emanuel, 2016: On the Role of Surface Fluxes and WISHE in Tropical Cyclone Intensification. J. Atmos. Sci., 73, 2011–2019.
    Zhu, Z., and P. Zhu, 2014: The role of outer rainband convection in governing the eyewall replacement cycle in numerical simulations of tropical cyclones. J. Geophys. Res., 119, 8049–8072.

    下載圖示
    QR CODE