簡易檢索 / 詳目顯示

研究生: 吳柏翰
Bo-Han Wu
論文名稱: 利用可攜式眼鏡型微攝影機輔助視障人士即時識別公車車號
Helping the blind to identify city bus numbers with the mobile eyewear
指導教授: 葉榮木
Yeh, Zong-Mu
蔡俊明
Tsai, Chun-Ming
學位類別: 碩士
Master
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 72
中文關鍵詞: 移動物偵測前景擷取光學字元辨識MS SAPI
英文關鍵詞: Motion detection, OCR, MS SAPI
論文種類: 學術論文
相關次數: 點閱:156下載:36
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 視障人士搭乘大眾交通工具(公車)時,面臨許多難題,其中最主要的問題就是無法得知迎面而來的公車車號。目前視障人士能解決的辦法,不外乎是請求旁人協助或手拿自製的公車車號板讓駕駛注意,但上述辦法皆不穩定且變動因素甚大。因此,基於影像處理技術的蓬勃發展,本研究改變以往只採用固定式攝影機處理的方式,利用“可攜式眼鏡型微攝影機”,在皆非固定的情況下(例如:背景、角度、車號等等),輔助視障人士即時識別公車車號,並以語音輸出告知其資訊。本研究採用主動搜尋與辨識,在不降低準確率的情況下提升系統整體速度。透過事前的分析歸納,直接擷取出輸入影像中感興趣的顏色範圍,並將其轉為二值化影像降低其資料量,再搭配設計的形態學遮罩來確保公車車號的完整性,且透過連通成份分析並挖取出車號區域,送入 MS MODI 做辨識,最後藉由 MS SAPI 在公車停靠前以語音的方式輸出。

    Blind people face many problems when they take bus. The major problem is to recognize an approaching city bus. The solution to this torment at present is to ask others’ assistance or to raise a sigh on which the destination is written for appealing bus drivers’ attention. But there exists much unreliability in fore-mentioned solutions. Because image processing is a highly developed research area, in this research, we adopt a mobile eyewear digital video to replace a traditional fixed one to help the blind recognize the bus numbers with vocal message. This research adopts proactive identification for fast response without harm to accuracy. Through beforehand analysis, a block with wanted colors is focused from input video. Then this data proceed with an adaptive binarization method for simplification and Morphology mask for integrity. Bus numbers can be obtained from the analysis with connected component and recognition of MS MODI. A vocal message will be launched with MS SAPI before bus stops in the end.

    摘要 I Abstract II 目錄 III 圖目錄 V 表目錄 VIII 第一章 緒論 1 1-1 前言 1 1-2 研究動機 3 1-3 研究目的 5 1-4 系統架構 6 1-5 論文架構 7 第二章 文獻探討與回顧 8 2-1 相關理論介紹 8 2-1-1 色彩空間(color space) 8 2-1-2 二值化(binarization) 12 2-1-3 形態學運算(morphology) 13 2-2 相關研究介紹 15 2-2-1 導盲輔具 15 2-2-2 無線辨識系統 21 2-2-3 移動物偵測(motion detection) 24 2-2-4 車牌辨識 27 第三章 即時識別公車車號之研究方法 28 3-1 感興趣的顏色區域擷取 29 3-1-1 前處理 29 3-1-2 二值化(binarization) 35 3-1-3 侵蝕(erosion) 36 3-1-4 膨脹(dilation) 37 3-1-5 斷開和閉合(opening and closing) 38 3-2 區域辨識 41 3-2-1 連通成份標籤(connected components labeling) 41 3-2-2 幾何篩選 43 3-3 車號識別 44 第四章 實驗結果與討論 45 4-1 實驗內容 46 4-2 實驗結果 47 4-3 結果分析與比較 57 第五章 結論與未來展望 65 參考文獻 66

    [1] 臺中市立忠明高級中學「身心障礙學生12年就學安置」學生個案輔導會議資料, 擷取自:國立台中啟明學校http://www.cmsb.tcc.edu.tw 最後開啟日期2011-04-17。
    [2] F. Kamalabadi, “Multidimensional image reconstruction in astronomy,” IEEE Signal Processing Magazine, Vol. 27, Issue: 4, pp. 86-96, 2010.
    [3] S.H. Thorne, C.H. Contag, “Using in vivo bioluminescence imaging to shed light on cancer biology,” Proceedings of the IEEE, Vol. 93, Issue: 4, pp. 750-762, 2005.
    [4] D. Garcia, J.C. del Álamo, D. Tanné et al., “Two-dimensional intraventricular flow mapping by digital processing conventional color-doppler echocardiography images,” IEEE Transactions on Medical Imaging, Vol. 29, Issue: 10, pp. 1701-1713, 2010.
    [5] N.M. Garcia-Aracil, J.M. Azorin Poveda, J.M. Sabater Navarro et al., “Visual Control of robots with changes of visibility in image features,” IEEE Latin America Transactions, Vol. 4, Issue: 1, pp. 27-33, 2006.
    [6] H. Zhang, “Image processing for the oil sands mining industry,” IEEE Signal Processing Magazine, Vol. 25, Issue: 6, pp. 198-200, 2008.
    [7] F. Yin, D. Makris, S.A. Velastin, “Time efficient ghost removal for motion detection in visual surveillance systems,” Electronics Letters, Vol. 44, Issue: 23, pp. 1351-1353, 2008.
    [8] 設計不良的導盲磚, 擷取自:余晏部落格http://blog.libertytimes.com.tw/yuyen/2008/10/09/21360 最後開啟日期2011-04-18。
    [9] 朱啟華,“視覺障礙學生搭乘大眾交通工具相關問題之研究”,碩士論文,國立花連師範大學特殊教育學系,2004。
    [10] 廖弘仁,“視覺障礙者搭乘公車系統之使用障礙調查分析”,碩士論文,中華大學運輸科技與物流管理學系碩士班,2009。
    [11] RGB色彩立方體圖示, 擷取自:Color Theory and Principles http://www.infocellar.com/graphics/color-theory.htm 最後開啟日期2011-05-25。
    [12] 色彩空間圖示, 擷取自:color space http://www.couleur.org/ 最後開啟日期2011-04-25。
    [13] M. Sezgin, B. Sankur, “Survey over image thresholding techniques and quantitative performance evaluation,” Journal of Electronic Imaging, Vol. 13, pp. 146-168, 2004.
    [14] A. Rosenfeld, P. De La Torre, “Histogram concavity analysis as an aid in threshold selection,” IEEE Transactions on System, man and Cybernetics, Vol. 13, pp. 231-235, 1983.
    [15] T. Pavlidis, “Threshold selection using second derivatives of the gray-scale image,” Proceedings of the Second International Conference on Document Analysis and Recognition, pp. 274-277, 1993.
    [16] N. Otsu, “A threshold selection method from gray-level histograms,” IEEE Transactions on Systems, Man and Cybernetics, Vol. 9, Issue: 1, pp. 62-66, 1979.
    [17] J. Kittler, J. Illingworth, “Minimum error thresholding,” Pattern Recognition, Vol. 19, Issue: 1, pp. 41-47, 1986.
    [18] J.N. Kapura, P.K. Sahoob, A.K.C. Wongc, “A new method for gray-level picture thresholding using the entropy of the histogram,” Computer Vision, Graphics, and Image Processing, Vol. 29, Issue: 3, pp. 273-285, 1985.
    [19] L. Hertz, R.W. Schafer, “Multilevel thresholding using edge matching,” Computer Vision, Graphics, and Image Processing, Vol. 44, Issue: 3, pp. 279-295, 1988.
    [20] L.K. Huang, M.J.J. Wang, “Image thresholding by minimizing the measures of fuzziness,” Pattern Recognition, Vol. 28, Issue: 1, pp. 41-51, 1995.
    [21] A.S. Abutableb, “Automatic thresholding of gray-level pictures using two-dimensional entropy,” Computer Vision, Graphics, and Image Processing, Vol. 47, Issue: 1, pp. 22-32, 1989.
    [22] Y.Yasuda, M.Dubois, T.S.Huang, “Data compression for check processing machines,” Proceedings of the IEEE, Vol. 68, Issue: 7, pp. 874-885, 1980.
    [23] T. Taxt, P.J. Flynn, A.K. Jain, “Segmentation of document images,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 11, Issue: 12, pp. 1322-1329, 1989.
    [24] R.M. Haralick, S.R. Sternberg, X. Zhuang, “Image analysis using mathematical morphology,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. PAMI-9, pp. 532-550, July 1987.
    [25] F. Wong, J.S. Zelek, “Tactile & inertial patterns from a long white cane,” The First IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, pp. 519-524, 2006.
    [26] I. Ulrich, J. Borenstein, “The guidecane - applying mobile robot technologies to assist the visually impaired,” IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, Vol. 31, Issue: 2, pp. 131-136, 2001.
    [27] 導盲犬, 擷取自:OccuPaws guide dog association http://www.occupaws.org/ 最後開啟日期2011-05-25。
    [28] 人工矽視網膜晶片, 擷取自:交大新聞 – 盲人有眼福 人工視網膜有望 http://www.pac.nctu.edu.tw/Report/report_more.php?id=18614 最後開啟日期2011-05-25。
    [29] Kinect, 擷取自:Kinect utilized for Windows 7 Platform http://www.tipspad.com/content/kinect-utilized-windows-7-platform 最後開啟日期2011-05-25。
    [30] NAVI, 擷取自:NAVI project turns Kinect into a set of eyes for the visually impaired http://www.gizmag.com/kinect-as-a-set-of-eyes/18179/ 最後開啟日期2011-05-25。
    [31] 視障者就業時使用旅運輔助設備之評估研究, 擷取自:臺北市關懷盲人教育協會 http://becat.org.tw/ 最後開啟日期2011-05-29。
    [32] vOICe, 擷取自:Seeing With Your Ears http://www.nytimes.com/2005/12/11/magazine/11ideas_section3-14.html?ex=1291957200&en=3c72cf9fa46bbb06&ei=5090&partner=rssuserland&emc=rss 最後開啟日期2011-06-08。
    [33] M.Z.H. Noor, I. Ismail, M.F. Saaid, “Bus detection device for the blind using RFID application,” International Colloquium on Signal Processing & Its Applications, pp. 247-249, 2009.
    [34] A.M. Mustapha, M.A. Hannan, A. Hussain, H. Basri, “UKM campus bus identification and monitoring using RFID and GIS,” IEEE Student Conference on Research and Development, pp. 101-104, 2009.
    [35] 臺北市政府無障礙環境推動委員會, 擷取自:第94次會議紀錄 http://pwb.taipei.gov.tw/upload/a21289ed8dc20025f5b30c7823f77d3d.doc最後開啟日期2011-06-12。
    [36] R. Rajagopalan, M.T. Orchard, R.D. Brandt, “Motion field modeling for video sequences,” IEEE Transactions on Image Processing, Vol. 6, pp. 1503-1516, 1997.
    [37] O. Javed, K. Shafique, M. Shah, “A Hierarchical approach to robust background subtraction using color and gradient information,” Workshop on Motion and Video Computing, pp. 22-27, 2002.
    [38] J.L. Barron, D.J. Fleet, S.S. Beauchemin, T.A. Burkitt, “Performance of optical flow techniques,” IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 236-242, 1992.
    [39] C.R. Wren, A. Azarbayejani, T. Darrell, A.P. Pentland “Pfinder: real-time tracking of the human body,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 19, pp. 780-785, 1997.
    [40] J.C. Tai; K.T. Song, “Background segmentation and its application to traffic monitoring using modified histogram,” IEEE International Conference on Networking, Sensing and Control, Vol. 1, pp. 13-18, 2004.
    [41] A.M. Elgammal, D. Harwood, L.S. Davis, “Non-parametric model for background subtraction,” European Conference on Computer Vision, pp. 751-767, 2000.
    [42] E.J. Carmona, M.C. Javier, J. Mira, “A new video segmentation method of moving objects based on blob-level knowledge,” Pattern Recognition Letters, Vol. 29, pp. 272-285, 2008.
    [43] Y. Jia, C. Zhang, “Front-view vehicle detection by Markov Chain Monte Carlo method,” Pattern Recognition, Vol. 42, pp. 313-321, 2009.
    [44] Z.X. Chen, C.Y. Liu, F.L. Chang, G.Y. Wang, “Automatic license-plate location and recognition based on feature salience,” IEEE Transactions on Vehicular Technology, Vol. 58, pp. 3781-3785, 2009.
    [45] H. Sheng, C. Li, Q. Wen, Z. Xiong, “Real-time anti-interference location of vehicle license plates using high-definition video,” IEEE Intelligent Transportation Systems Magazine, Vol. 1, pp. 17-23, 2009.
    [46] X. Fan, G. Fan, “Graphical models for joint segmentation and recognition of license plate characters,” IEEE Signal Processing Letters, Vol. 16, pp. 10-13, 2009.
    [47] 礫程科技股份有限公司, 擷取自:安裝地點 http://www.whitepebble.com.tw/TChinese/prod03.htm最後開啟日期2011-06-13。
    [48] L.O. Fedorovici, E. Voisan, F. Dragan, D. Iercan, “Improved neural network OCR based on preprocessed blob classes,” IEEE International Joint Conference on Computational Cybernetics and Technical Informatics, pp. 559-564, 2010.
    [49] SAPI, 擷取自:Speech API Overview http://msdn.microsoft.com/en-us/library/ee125077(VS.85).aspx#API_Speech_Recognition 最後開啟日期 2011-02-21。
    [50] B.B. Chaudhuri, B. Chanda, “The equivalence of best plane fit gradient with Roberts,' Prewitt's, and Sobel's gradient for edge detection and a 4-neighbor gradient with useful properties,” Signal Processing, Vol. 6, pp. 143-151, 1984.
    [51] K.W. Wong, K.M. Lam, W.C. Siu, “A robust scheme for live detection of human face in color images,” Signal Processing: Image Communication, Vol. 18, pp. 103-114, 2003.
    [52] 鄔誌仁,“膚色偵測器應用於即時動態人臉偵測系統”,碩士論文,國立臺灣師範大學機電科技學系,2007。
    [53] D. Charalampidis, “A modified k-means algorithm for circular invariant clustering,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 27, pp. 1856-1865, 2005.
    [54] R.C. Gonzalez, R.E. Woods, “Digital Image Processing(3rd edition),” Princeton Inc., 2008.
    [55] 陳勉光,“利用可攜式鏡頭輔助視障者即時識別公車車號”,碩士論文,國立臺灣師範大學機電科技學系,2010。
    [56] 邱建中,“利用時空域分析與背景相減法作視訊移動物偵測”,碩士論文,國立臺灣師範大學機電科技學系,2009。

    下載圖示
    QR CODE