簡易檢索 / 詳目顯示

研究生: 陳宥任
Chen, You-Jen
論文名稱: 基於多孔隙半導體材料的二氧化氮氣體感測器之研製
Development of Nitrogen Dioxide Gas Sensors Using Porous Semiconductor Materials
指導教授: 楊承山
Yang, Chan-Shan
口試委員: 楊承山
Yang, Chan-Shan
楊啓榮
Yang, Chii-Rong
黎宇泰
Li, Yu-Tai
口試日期: 2024/07/25
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 108
中文關鍵詞: 氣體感測器太赫茲超材料金屬有機框架材料鈦酸鋅鈣鈦礦氧化鋅
英文關鍵詞: Gas sensor, Terahertz, Metamaterial, Zinc oxide, Metal-organic framework, Zinc titanate, Perovskite
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202401641
論文種類: 學術論文
相關次數: 點閱:313下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

致謝 i 摘要 ii Abstract iv 總目錄 vi 表目錄 x 圖目錄 xi 第一章 緒論 1 1.1 前言 1 1.2 二氧化氮 2 1.3 太赫茲 3 1.4 超材料 4 1.5 有機金屬框架材料 6 1.6 氧化鋅 7 1.7 鈦酸鋅 8 1.8 氣體感測器的種類與原理 9 1.9 指叉電極 11 1.10 雷射誘導石墨烯 12 1.11 研究動機與目的 13 1.12 論文架構 14 第二章 文獻回顧 16 2.1 氣體感測器種類及介紹 16 2.1.1 氣體感測器之參數 20 2.2 太赫茲超材料氣體感測器 22 2.3 二氧化氮氣體感測器 25 2.4 氧化鋅 29 2.5 金屬有機框架材料 30 2.6 鈦酸鋅 33 第三章 實驗設計與規劃 36 3.1 實驗程序規劃 36 3.2 氣敏粉末之製備 38 3.2.1 氧化鋅/釩金屬有機框架(ZnO/V-MOF)粉末之製備 38 3.2.2 鈦酸鋅(ZnTiO3)粉末之製備 42 3.3 太赫茲超材料之設計與製備 44 3.4 指叉電極之設計與製備 47 3.5 二氧化氮氣體感測器之性能測試-太赫茲量測系統 49 3.6 二氧化氮氣體感測器之性能測試-電性量測系統 50 3.7 實驗與檢測設備 51 3.7.1 製程設備 51 3.7.2 檢測設備 52 第四章 結果與討論 57 4.1 太赫茲超材料之設計 57 4.2 ZV400與ZT800之製備 60 4.2.1 ZnO之表面形貌 60 4.2.2 V-MOF之表面形貌 62 4.2.3 微米碳球(Carbon Ball)之表面形貌 64 4.2.4 ZV400之表面形貌 66 4.2.5 ZT800之表面形貌 69 4.2.6 ZnO、V-MOF與ZV400之XRD分析 72 4.2.7 ZT800之XRD分析 75 4.2.8 ZnO、V-MOF與ZV400之XPS分析 76 4.2.9 ZT800之XPS分析 83 4.3 ZV400 整合超材料氣體感測器之性能測試 86 4.3.1 太赫茲超材料的氣體測試比較 86 4.3.2 超材料整合ZV400的響應比較 87 4.3.3 超材料整合ZV400於不同二氧化氮濃度之模擬 88 4.4 ZV400 與ZT800整合石墨烯電極氣體感測器之性能測試 89 4.4.1 ZV400 整合石墨烯電極之氣體感測器 91 4.4.2 ZT800 整合石墨烯電極之氣體感測器 95 4.5 二氧化氮氣體感測機制 99 第五章 結論與未來展望 101 5.1 結論 101 5.2 未來展望 102 參考文獻 103

Andrea Onetti,「智慧感測器推動安全、永續的自動駕駛未來」,電子工程專輯,2023
Javaid, M., Haleem, A., Rab, S., Singh, R. P., & Suman, R., “Sensors for daily life: A review”, Sensors International, 2, 100121, 2021.
謝孟玹,「氣體感測器─打造電子鼻未來應用情境」,經濟部技術處,2018
Galstyan, V., D’Arco, A., Di Fabrizio, M., Poli, N., Lupi, S., & Comini, E., “Detection of volatile organic compounds: From chemical gas sensors to terahertz spectroscopy”, Reviews in Analytical Chemistry 40.1: 33-57, 2021.
Lee, S. W., Lee, W., Hong, Y., Lee, G., & Yoon, D. S. “Recent advances in carbon material-based NO2 gas sensors”, Sensors and Actuators B: Chemical, 255, 1788-1804, 2018.
Brunet, J., Garcia, V. P., Pauly, A., Varenne, C., & Lauron, B., “An optimised gas sensor microsystem for accurate and real-time measurement of nitrogen dioxide at ppb level”, Sensors and Actuators B: Chemical, 134(2), 632-639, 2008.
K. Fukunaga, M. Picollo, “Terahertz spectroscopy applied to the analysis of artists’ materials”, Applied Physics A, 100, 591-597, 2010.
Pawar, A. Y., Sonawane, D. D., Erande, K. B., & Derle, D. V., “Terahertz technology and its applications”, Drug invention today, 5(2), 157-163, 2013.
Degl’Innocenti, R., Lin, H., & Navarro-Cía, M., “Recent progress in terahertz metamaterial modulators”, Nanophotonics, 11(8), 1485-1514, 2022.
He, J., He, X., Dong, T., Wang, S., Fu, M., ... & Zhang, Y., “Recent progress and applications of terahertz metamaterials”, Journal of Physics D: Applied Physics, 55(12), 123002, 2021.
Gu, J., Singh, R., Liu, X., Zhang, X., Ma, Y., Zhang, S., ... & Zhang, W., “Active control of electromagnetically induced transparency analogue in terahertz metamaterials”, Nature communications, 3(1), 1151, 2012.
Xu, Q., Su, X., Ouyang, C., Xu, N., Cao, W., Zhang, Y., & Zhang, W., “Frequency-agile electromagnetically induced transparency analogue in terahertz metamaterials”, Optics letters, 41(19), 4562-4565, 2016.
Liu, M., Plum, E., Li, H., Li, S., Xu, Q., Zhang, X., ... & Zhang, W., “Temperature‐controlled optical activity and negative refractive index”, Advanced Functional Materials, 31(14), 2010249, 2021.
Tao, H., Bingham, C. M., Strikwerda, A. C., Pilon, D., Shrekenhamer, D., Landy, N. I., ... & Averitt, R. D., “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization”, physical review B, 78(24), 241103, 2008.
Paul, O., Beigang, R., & Rahm, M., “Highly selective terahertz bandpass filters based on trapped mode excitation”, Optics Express, 17(21), 18590-18595, 2009.
Ou, H., Lu, F., Xu, Z., & Lin, Y. S., “Terahertz metamaterial with multiple resonances for biosensing application”, Nanomaterials, 10(6), 1038, 2020.
Xu, W., Xie, L., & Ying, Y., “Mechanisms and applications of terahertz metamaterial sensing: a review”, Nanoscale, 9(37), 13864-13878, 2017.
Kitagawa, S., “Metal–organic frameworks (MOFs)”, Chemical Society Reviews, 43(16), 5415-5418, 2014.
Lee, Y. R., Kim, J., & Ahn, W. S., “Synthesis of metal-organic frameworks: A mini review”, Korean Journal of Chemical Engineering, 30, 1667-1680, 2013.
Zhu, L., & Zeng, W., “Room-temperature gas sensing of ZnO-based gas sensor: A review”, Sensors and Actuators A: Physical, 267, 242-261, 2017.
Abdullah, N. A., Khusaimi, Z., & Rusop, M., “A review on zinc oxide nanostructures: Doping and gas sensing”, Advanced Materials Research, 667, 329-332, 2013.
Kolodziejczak-Radzimska, A., & Jesionowski, T., “Zinc oxide-from synthesis to application: A review”, Materials, 7, 2833–2881, 2014.
Lim, K., Abdul Hamid, M. A., Shamsudin, R., Al-Hardan, N. H., Mansor, I., & Chiu, W., “Temperature-driven structural and morphological evolution of zinc oxide nano-coalesced microstructures and its defect-related photoluminescence properties”, Materials, 9(4), 300, 2016.
Franco, M. A., Conti, P. P., Andre, R. S., & Correa, D. S., “A review on electrochemistry ZnO gas sensors”, Sensors and Actuators Reports, 4, 100100, 2022.
Althomali, R. H., Jabbar, H. S., Kareem, A. T., Abdullaeva, B., Abdullaev, S. S., Alsalamy, A., ... & Mohammed, Y., “Various methods for the synthesis of NiTiO3 and ZnTiO3 nanomaterials and their optical, sensor and photocatalyst potentials: A review”, Inorganic Chemistry Communications, 111493, 2023.
Zhao, J., “First-principles study of ferroelectricity in oxide superlattices”, 2013.
Asri, M. I. A., Hasan, M. N., Fuaad, M. R. A., Yunos, Y. M., & Ali, M. S. M., “MEMS gas sensors: A review”, IEEE Sensors Journal, 21(17), 18381-18397, 2021.
Tang, N., Zhou, C., Xu, L., Jiang, Y., Qu, H., & Duan, X., “A fully integrated wireless flexible ammonia sensor fabricated by soft nano-lithography”, ACS sensors, 4(3), 726-732, 2019.
R. Bogue, “Detecting gases with light: a review of optical gas sensor technologies”, Sensor Review, 35, 133-140, 2015.
Mikolasek, M., Meri, J., Chymo, F., Ondrejka, P., Rehacek, V., Predanocy, M., ... & Hotovy, I., “Novel Cu2O gas sensor prepared by potentiostatic electrodeposition on IDE electrodes”, In Journal of Physics: Conference Series, 1319, 012009, 2019.
Feng, S., Farha, F., Li, Q., Wan, Y., Xu, Y., Zhang, T., & Ning, H., “Review on smart gas sensing technology”, Sensors, 19(17), 3760, 2019.
Yen, Y. H., Hsu, C. S., Lei, Z. Y., Wang, H. J., Su, C. Y., Dai, C. L., & Tsai, Y. C., “Laser-induced graphene stretchable strain sensor with vertical and parallel patterns”, Micromachines, 13(8), 1220, 2022.
Paliwal, A., Sharma, A., Tomar, M., & Gupta, V., “Room temperature detection of NO2 gas using optical sensor based on surface plasmon resonance technique”, Sensors and Actuators B: Chemical, 216, 497-503, 2015.
Chaloeipote, G., Prathumwan, R., Subannajui, K., Wisitsoraat, A., & Wongchoosuk, C., “3D printed CuO semiconducting gas sensor for ammonia detection at room temperature”, Materials Science in Semiconductor Processing, 123, 105546, 2021.
R. Kumar, O. Al-Dossary, G. Kumar, A. Umar, “Zinc oxide nanostructures for NO2 gas sensor applications: a review”, Nano-Micro Letters, 7, 97-120, 2015.
You, B., Ho, C. H., Zheng, W. J., & Lu, J. Y., “Terahertz volatile gas sensing by using polymer microporous membranes”, Optics express, 23(3), 2048-2057, 2015.
Drexler, C., Shishkanova, T. V., Lange, C., Danilov, S. N., Weiss, D., Ganichev, S. D., & Mirsky, V. M., “Terahertz split-ring metamaterials as transducers for chemical sensors based on conducting polymers: a feasibility study with sensing of acidic and basic gases using polyaniline chemosensitive layer”, Microchimica Acta, 181, 1857-1862, 2014.
Guo, W., Hu, F., Liu, W., Jiang, M., Chen, Z., Zhang, X., ... & Wang, Y., “Molecular imprinted polymer modified terahertz metamaterial sensor for specific detection of gaseous hexanal”, Materials Letters, 322, 132468, 2022.
Choi, M. S., Kim, M. Y., Mirzaei, A., Kim, H. S., Kim, S. I., Baek, S. H., ... & Lee, K. H., “Selective, sensitive, and stable NO2 gas sensor based on porous ZnO nanosheets”, Applied Surface Science, 568, 150910, 2021.
Bai, H., Guo, H., Wang, J., Dong, Y., Liu, B., Xie, Z., ... & Zheng, Y., “A room-temperature NO2 gas sensor based on CuO nanoflakes modified with rGO nanosheets”, Sensors and Actuators B: Chemical, 337, 129783, 2021.
Shendage, S. S., Patil, V. L., Vanalakar, S. A., Patil, S. P., Harale, N. S., Bhosale, J. L., ... & Patil, P. S., “Sensitive and selective NO2 gas sensor based on WO3 nanoplates. Sensors and Actuators B: Chemical, 240, 426-433, 2017.
Kumar, R., Al-Dossary, O., Kumar, G., & Umar, A., “Zinc oxide nanostructures for NO2 gas–sensor applications: A review”, Nano-Micro Letters, 7, 97-120, 2015.
Sonker, R. K., Sabhajeet, S. R., Singh, S., & Yadav, B. C., “Synthesis of ZnO nanopetals and its application as NO2 gas sensor”, Materials Letters, 152, 189-191, 2015.
Sinha, M., Mahapatra, R., Mondal, B., Maruyama, T., & Ghosh, R., “Ultrafast and reversible gas-sensing properties of ZnO nanowire arrays grown by hydrothermal technique”, The Journal of Physical Chemistry C, 120(5), 3019-3025, 2016.
Tesfamichael, T., Cetin, C., Piloto, C., Arita, M., & Bell, J., “The effect of pressure and W-doping on the properties of ZnO thin films for NO2 gas sensing”, Applied Surface Science, 357, 728-734, 2015.
Fang, F., Bai, L., Song, D., Yang, H., Sun, X., Sun, H., & Zhu, J., “Ag-modified In2O3/ZnO nanobundles with high formaldehyde gas-sensing performance”, Sensors, 15(8), 20086-20096, 2015.
Cai, Y., Luo, S., Chen, R., Wang, J., Yu, J., & Xiang, L., “Fabrication of ZnO/Pd@ ZIF-8/Pt hybrid for selective methane detection in the presence of ethanol and NO2”, Sensors and Actuators B: Chemical, 375, 132867, 2023.
Arul, C., Moulaee, K., Donato, N., Iannazzo, D., Lavanya, N., Neri, G., & Sekar, C., “Temperature modulated Cu-MOF based gas sensor with dual selectivity to acetone and NO2 at low operating temperatures”, Sensors and Actuators B: Chemical, 329, 129053, 2021.
Wu, P. J., Hung, J. T., Hsieh, C. F., Yang, C. R., & Yang, C. S., “High-selectivity terahertz metamaterial nitric oxide sensor based on ZnTiO3 perovskite membrane”, APL Photonics, 8(10), 2023.
Chang, T. J., & Hsueh, T. J., “A NO2 gas sensor with a TiO2 nanoparticles/ZnO/MEMS-structure that is produced using ultrasonic wave grinding technology”, Journal of The Electrochemical Society, 167(2), 027521, 2020.
Ramgir, N., Bhusari, R., Rawat, N. S., Patil, S. J., Debnath, A. K., Gadkari, S. C., & Muthe, K. P., “TiO2/ZnO heterostructure nanowire based NO2 sensor”, Materials Science in Semiconductor Processing, 106, 104770, 2020.
Kosta, I., Navone, C., Bianchin, A., García-Lecina, E., Grande, H., Mouko, H. I., ... & García, I. “Influence of vanadium oxides nanoparticles on thermoelectric properties of an N-type Mg2Si0. 888Sn0. 1Sb0. 012 alloy”, Journal of Alloys and Compounds, 856, 158069, 2021.
Al-Gaashani, R., Radiman, S., Daud, A. R., Tabet, N., & Al-Douri, Y. J. C. I., “XPS and optical studies of different morphologies of ZnO nanostructures prepared by microwave methods”, Ceramics International, 39(3), 2283-2292, 2013.
Bu, X., Ding, K., Wu, Q., Yuan, Y., Liu, W., Han, C., ... & Li, X., “The synthesis of metal organic frameworks derived 3D porous V2O5 microrods for NO2 detection and its UV-enhanced sensing performance”, Sensors and Actuators B: Chemical, 393, 134231, 2023.
Bhagwat, U. O., Wu, J. J., Asiri, A. M., & Anandan, S., “Synthesis of ZnTiO3@ TiO2 heterostructure nanomaterial as a visible light photocatalyst”, ChemistrySelect, 4(20), 6106-6112, 2019.
Shrivastava, A., & Gupta, V. B., “Methods for the determination of limit of detection and limit of quantitation of the analytical methods”, Chron. Young Sci, 2(1), 21-25, 2011.
Li, J., Lu, Y., Ye, Q., Cinke, M., Han, J., & Meyyappan, M., “Carbon nanotube sensors for gas and organic vapor detection”, Nano letters, 3(7), 929-933, 2003.
Fu, H., Jiang, X., Yang, X., Yu, A., Su, D., & Wang, G., “Glycothermal synthesis of assembled vanadium oxide nanostructures for gas sensing”, Journal of Nanoparticle Research, 14, 1-14, 2012.
Marqués, R., Mesa, F., Martel, J., & Medina, F., “Comparative analysis of edge-and broadside-coupled split ring resonators for metamaterial design-theory and experiments”, IEEE Transactions on antennas and propagation, 51(10), 2572-2581, 2003.
Chen, C., Sun, X., Jiang, X., Niu, D., Yu, A., Liu, Z., & Li, J., “A two-step hydrothermal synthesis approach to monodispersed colloidal carbon spheres”, Nanoscale research letters, 4, 971-976, 2009.
Moreno-Castilla, C., “Colloidal and micro-carbon spheres derived from low-temperature polymerization reactions”, Advances in Colloid and Interface Science, 236, 113-141, 2016.
Chen, Y. J., Wu, P. J., Yang C. S., Yang, C. R., “Development of Terahertz Metamaterial Gas Sensor Utilizing Novel Composite semiconductor material ZnO/V-MOF for Nitrogen Dioxide Detection”, APL, in preparation.

Chen, Y. J., Yang, C. S., Yang, C. R., “Development of NO2 Gas Sensors Based on ZnO/V-MOF Pores Material”, APL, in preparation.

Chen, Y. J., Yang, C. S., Yang, C. R., “Development of Nitrogen Dioxide Gas Sensors Based on ZnTiO3 Perovskite Material”, APL, in preparation.

無法下載圖示 電子全文延後公開
2029/08/13
QR CODE